|本期目录/Table of Contents|

[1]谈高维,韦布春,崔永亮,等.镉钝化细菌对水稻幼苗镉吸收的影响[J].应用与环境生物学报,2019,25(03):524-531.[doi:10.19675/j.cnki.1006-687x.201812006]
 TAN Gaowei,WEI Buchun,CUI Yongliang,et al.Effects of cadmium passivation bacteria on the growth and cadmium adsorption of rice seedlings[J].Chinese Journal of Applied & Environmental Biology,2019,25(03):524-531.[doi:10.19675/j.cnki.1006-687x.201812006]
点击复制

镉钝化细菌对水稻幼苗镉吸收的影响
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年03期
页码:
524-531
栏目:
重金属污染及生物修复专栏
出版日期:
2019-06-25

文章信息/Info

Title:
Effects of cadmium passivation bacteria on the growth and cadmium adsorption of rice seedlings
作者:
谈高维韦布春崔永亮陈香归闫敏沈甜秦诗洁羊鑫江鑫余秀梅
1四川农业大学资源学院 成都 611130 2四川省自然资源科学研究院 成都 610041
Author(s):
TAN Gaowei1 WEI Buchun1 CUI Yongliang2 CHEN Xianggui1 YAN Min1 SHEN Tian1 QIN Shijie1 YANG Xin1 JIANG Xin1 & YU Xiumei1**
1 College of Resources, Sichuan Agricultural University, Chengdu 611130, China; 2 Natural Resources Research Institute of Sichuan Province, Chengdu 610041, China
关键词:
钝化微生物水稻幼苗促生
Keywords:
cadmium passivation bacteria rice seedling growth promoting
分类号:
X172 : X53
DOI:
10.19675/j.cnki.1006-687x.201812006
摘要:
为了解根际重金属钝化微生物对作物生长及土壤重金属吸收的影响,将来源于镉(Cd)污染水稻土的镉钝化细菌枯草芽孢杆菌CDR-1、雷氏普罗威登斯菌CDR-2、阿耶波多氏芽孢杆菌CDR-3分别接种到水稻幼苗根际,通过测定水稻苗的生长、生物量及镉含量来分析根际镉钝化细菌对水稻生长及镉吸收的影响. 结果显示,镉钝化细菌CDR-1、CDR-2、CDR-3的Cd2+最低抑制浓度分别为200、200、400 mg/L,其在20 mg/L Cd2+溶液中的镉钝化率均达到100%,且随Cd2+浓度的上升镉钝化率呈现下降趋势. 在5和10 mg/L Cd2+胁迫下,这3株细菌对水稻幼苗的生长有不同程度的影响,并都能显著降低水稻幼苗根和地上部分的镉含量,其中 CDR-1对水稻幼苗的促生降镉作用最优;在0.5、1和2 mg/kg Cd2+胁迫下,CDR-1仍然能显著促进水稻幼苗生长,增加水稻幼苗生物量,并能使水稻幼苗根和地上部分的镉含量降低34.88%-61.63%. 本研究表明Cd2+钝化细菌能够显著降低水稻幼苗的镉吸收量,Cd2+钝化促生细菌CDR-1可应用于镉污染农田土壤的生物修复. (图4 表3 参30)
Abstract:
Whether heavy metal-passivating microorganisms affect crop growth and the uptake of soil heavy metals is not clear. This study focuses on the effects of cadmium (Cd)-resistant bacteria on the growth of and Cd uptake in rice seedlings under Cd stress. The cadmium-passivating bacteria, Bacillus subtilis CDR-1, Bacillus aryabhattai CDR-2, and Providencia rettgeri CDR-3, were derived from cadmium-contaminated paddy soil, inoculated into the rhizosphere of rice seedlings, and their effects on the growth and cadmium absorption of rice were analyzed by measuring the growth biomass and cadmium content of these rice seedlings. The lowest inhibition concentrations of Cd2+ in CDR-1, CDR-2, and CDR-3 were 200 mg/L, 200 mg/L, and 400 mg/L, respectively. Their Cd2+ passivation rates were 100% in a 20 mg/L Cd2+ solution. The Cd2+ passivation rate decreased with increase in Cd2+ concentration. Under 5 mg/L and 10 mg/L of Cd2+ stress, the three bacterial strains exhibited different degrees of effects on the growth of rice seedlings, and all of them could significantly reduce the cadmium content in the root and over-the-ground parts of the rice seedlings. Among the three strains of bacteria, the role of CDR-1 in promoting growth and decreasing cadmium content in rice seedlings is the best. Under 0.5 mg/kg, 1 mg/kg, and 2 mg/kg of Cd2+ stress, CDR-1 can still significantly promote growth, increase the biomass, and reduce the content of cadmium in the root and over-the-ground parts of rice seedlings by 34.88%-61.63%. This study showed that the Cd2+-passivating bacteria can significantly reduce cadmium uptake in rice seedlings, and the Cd2+ passivating and growth promoting bacteria CDR-1 can be used for the bioremediation of cadmium-contaminated farmland soil.

参考文献/References:

1. Zhao XM, Yao LA, Ma QL, Zhou GJ, Wang L, Fang QL, Xu ZC. Distribution and ecological risk assessment of cadmium in water and sediment in Longjiang River, China: Implication on water quality management after pollution accident [J]. Chemosphere, 2018, 196: 107-116
2. Wu G, Kang HB, Zhang XY, Shao HB, Chu LY, Ruan CJ. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities [J]. J Hazard Mater, 2010, 174: 1-8
3. 李启全, 张少尧, 代天飞, 高雪松, 张新, 王昌全, 袁大刚, 李坤蓉. 成都平原农地土壤镉含量特征及来源研究[J]. 农业环境科学学报, 2014, 33 (5): 898-906 [Li QQ, Zhang SY, Dai TF, Gao XS, Zhang X, Wang CQ, Yuan DG, Li KR. Contents and sources of cadmium in farmland soils of Chengdu Plain, China [J]. J Agro-Environ Sci, 2014, 33 (5): 898-906]
4. 田效琴, 李卓, 刘永红. 成都平原农田镉污染情况及油菜镉吸收特征[J]. 农业环境科学学报, 2017, 36 (3): 496-506 [Tian XQ, Li Z, Liu YH. Characteristics of cadmium uptake by rape (B. junica) grown in cadmium contaminated farmland on Chengdu Plain [J]. J Agro Environ Sci, 2017, 36 (3): 496-506]
5. Mitra S, Pramanik K, Ghosh PK, Soren T, Sarkar A, Dey RS, Pandey S, Maiti TK. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress [J]. Microbiol Res, 2018, 210: 12-25
6. Liu XM, Zhong LB, Meng J, Wang F, Zhang JJ, Zhi YY, Zeng LZ, Xu JM. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health [J]. Environ Pollut, 2018, 239: 208-31
7. Pramanik K, Mitra, S, Sarkar A, Maiti TK. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092 [J]. J Hazard Mater, 2018, 351: 317-329
8. Li H, Luo N, Li YW, Cai QY, Li HY, Mo CH. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures [J]. Environ Pollut, 2017, 224: 622-630
9. Lin XY, Mou RX, Cao ZY, Xu P, Wu XL, Zhu ZW, Chen MX. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains [J]. Sci Total Environ, 2016, 569-570: 97-104
10. Li Y, Pang HD, He LY, Wang Q, Sheng XF. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria [J]. Ecotoxicol Environ Saf, 2017, 138: 56-63
11. 张锡洲, 张洪江, 李廷轩, 余海英. 水稻耐镉性差异及镉低积累种质资源的筛选[J]. 中国生态农业学报, 2013, 21 (11): 1434-1440 [Zhang XZ, Zhang HJ, Li TX, Yu HY. Differences in Cd-tolerance of rice and screening for Cd low-accumulation rice germplasm resources [J]. Chin J Eco-agric, 2013, 21 (11): 1434-1440]
12. 刘春梅, 罗盛国, 刘元英. 硒对镉胁迫下寒地水稻镉含量与分配的影响[J]. 植物营养与肥料学报, 2015, 21 (1): 190-199 [Liu CM, Luo GS, Liu YY. Effects of Se on Cd content and distribution in rice plant under Cd stress in cold climate [J]. J Plant Nutr Fertil Sci, 2015, 21 (1): 190-199]
13. 任艳芳, 何俊瑜, 周国强, 王阳阳. 镨对镉胁迫下水稻幼苗根系生长和根系形态的影响[J]. 生态环境学报, 2010, 19 (1): 102-107 [Ren YF, He JY, Zhou GQ, Wang YY. Effects of praseodymium on root growth and morphological characteristics of rice seedlings under cadmium stress [J]. Ecol Environ, 2010, 19 (1): 102-107]
14. 高宇, 程潜, 张梦君, 朱振宇, 胡婷婷, 杨宇. 镉污染土壤修复技术研究[J]. 生物技术通报, 2017, 33 (10): 103-110 [Gao Y, Chen Q, Zhang MJ, Zhu ZY, Hu TT, Yang Y. Research advance on remediation technology of cadmium contaminated soil [J]. Biotechnol Bull, 2017, 33 (10): 103-110]
15. Liu YL, Tie BQ, Li YXL, Lei M, Wei XD, Liu XL, Du HH. Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains [J]. Ecotoxicol Environ Saf, 2018, 163: 223-229
16. Siripornadulsil S, Siripornadulsil W. Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation [J]. Ecotoxicol Environ Saf. 2013, 94: 94-103
17. Mitra S, Pramanik K, Sarkar A, Ghosh PK, Soren T, Maiti TK. Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress [J]. Ecotoxicol Environ Saf, 2018, 156: 183-196.
18. 中华人民共和国环境保护部. GB 15618—2008 土壤环境质量标准[S]. 北京: 中国环境科学出版社, 2015 [Ministry of Environmental Protection of the People’s Republic of China.GB 15618—2008 Environmental Quality Standard for Soils [S]. Beijing: China Environmental Science Press, 2015]
19. 刘红娟, 张慧, 党志, 易筱筠, 杨琛. 一株耐镉细菌的分离及富集Cd的机理[J]. 环境工程学报, 2009, 3 (2): 367-371 [Liu HJ, Zhang H, Dang Z, Yi XY, Yang C. Isolation and bio-accumulation mechanisms of a Cd-resisting bacterium [J]. Chin J Environ Eng, 2009, 3 (2): 367-371]
20. 周丽平, 袁亮, 赵炳强, 李燕婷, 林治安, 不同用量风化煤腐殖酸对玉米根系的影响[J]. 中国农业科学, 2019, 52 (2): 285-292 [Zhou LP, Yuan L, Zhao BQ, Li YT, Lin ZA. Response of maize roots to different additive amounts of weathered coal humic acids [J]. Sci Agric Sin, 2019, 52 (2): 285-292.
21. 史静, 潘根兴, 夏运生, 张仕颖, 张乃明. 镉胁迫对两品种水稻生长及抗氧化酶系统的影响[J]. 生态环境学报, 2013, 22 (5): 832-837.[Shi J, Pan GX, Xia YS, Zhang SY, Zhang NM. Effects of Cd on different rice growth and antioxidant enzyme system [J]. Ecol Environ Sci, 2013, 22 (5): 832-837]
22. Sharma RK, Archana G. Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria [J]. Appl Soil Ecol, 2016, 107: 66-78.
23. 周丽英, 叶仁杰, 林淑婷, 刘杰, 肖清铁, 林素兰, 李艺, 林文熊, 林瑞余. 水稻根际耐镉细菌的筛选与鉴定[J]. 中国生态农业学报, 2012, 20 (5): 597-603 [Zhou LY, Ye RJ, Lin ST, Liu J, Xiao QT, Li Y, Lin WX, Lin YR . Screening and identification of cadmium-tolerant bacteria from rhizosphere soils under rice [J]. Chin J Eco-Agric, 2012, 20 (5): 597-603]
24. 王小波, 李学如, 茆灿泉, 江南屏, 郭泰林. 耐镉马克思克鲁维酵母重金属镉吸附特性的研究[J]. 菌物学报, 2013, 32 (5): 868-875 [Wang XB, Li XR, Mao CQ, Jiang NP, Guo TL. The characteristics of cadmium adsorption by Cd-resisting Kluyveromyces marxianus YS-K1 [J]. Mycosystema, 2013, 32 (5): 868-875]
25. 林晓燕, 牟仁祥, 曹赵云, 朱智伟, 陈学铭. 耐镉细菌菌株的分离及其吸附镉机理研究[J]. 农业环境科学学报, 2015, 34 (9): 1700-1706 [Lin XY, Mou RX, Cao ZY, Zhu XW, Chen XM. Isolation and cadmium adsorption mechanisms of cadmium-resistant bacteria strains [J]. J Agro-Environ Sci, 2015, 34 (9): 1700-1706]
26. 付瑾, 钱学辉, 钱林, 柳建设. 皮氏罗尔斯通氏菌株DX-T3-01的耐镉性能及镉富集机理[J]. 应用与环境生物学报, 2011, 17 (5): 717-721 [Fu J, Qian XH, Qian L, Liu JS. Cadmium tolerance and bio-accumulation mechanisms of Ralstonia pickettii strain DX-T3-01 [J]. Chin J Appl Environ Biol, 2011, 17 (5): 717-721]
27. 燕传明, 贺卓, 葛占标, 盛下放, 何琳燕. 两种重金属抗性细菌对铅镉吸附特性的比较研究[J]. 环境科学学报, 2018, 38 (9): 3597-3604 [Yan CM, He Z, Ge ZB. Sheng XF, He LY. Comparative study on adsorption characteristics of lead and cadmium by two heavy metal resistant bacteria [J]. Acta Sci Circumst, 2018, 38 (9): 3597-3604]
28. 李艳梅, 王琼瑶, 涂卫国, 崔永亮, 钟玘狄, 李俐珩, 陈强, 余秀梅. 镍胁迫下产铁载体细菌对花生的促生性[J]. 微生物学通报, 2017, 44 (8): 1882-1890 [Li YM, Wang QY, Tu WG, Cui YL, Zhong QD, Li LQ, Chen Q, Yu XM. Growth promoting activity of siderophore secreting bacteria for peanut plant under nickel stress [J]. Microbiol Chin, 2017, 44 (8): 1882-1890]
29. 何俊瑜, 王阳阳, 任艳芳, 周国强, 杨梁静. 镉胁迫对不同水稻品种幼苗根系形态和生理特性的影响[J]. 生态环境学报, 2009, 18 (5): 1863-1868 [He JY, Wang YY, Ren YF, Zhou GQ, Yang LJ. Effect of cadmium on root morphology and physiological characteristics of rice seedlings [J]. Ecol Environ Sci, 2009, 18 (5): 1863-1868]
30. Belimov AA, Dietz KJ. Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations [J]. Microbiol Res, 2000, 155 (2): 113-121

相似文献/References:

[1]夏汉平.土壤-植物系统中的镉研究进展[J].应用与环境生物学报,1997,3(03):289.
 Xia Hanping.STUDIES ON CADMIUM IN SOIL-PLANT SYSTEM[J].Chinese Journal of Applied & Environmental Biology,1997,3(03):289.
[2]白红娟,张肇铭,李保珍,等.固定化球形红细菌去除镉的动力学及其与质粒的关系[J].应用与环境生物学报,2008,14(02):249.
 BAI Hongjuan,et al..Kinetics of Cadmium Removal by Immobilized Rhodobacter sphaeroides and Its Relation with Plasmid[J].Chinese Journal of Applied & Environmental Biology,2008,14(03):249.
[3]段学军** 黄春晓.重金属镉对水田土壤微生物基因多样性的影响[J].应用与环境生物学报,2008,14(04):510.
[4]潘响亮,张道勇,黄承琳.向日葵根分泌物对水合铁氧化物(HFO)吸附Cd2+的促进效应[J].应用与环境生物学报,2010,16(01):33.[doi:10.3724/SP.J.1145.2010.00033]
 HUANG Chengling,ZHANG Daoyong,PAN Xiangliang.Enhanced Adsorption of Cd2+ to HFO by Root Exudates from Helianthus annuus[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):33.[doi:10.3724/SP.J.1145.2010.00033]
[5]赵晶,冯文强,秦鱼生,等.不同氮肥对小麦吸收镉的影响*[J].应用与环境生物学报,2010,16(01):58.[doi:10.3724/SP.J.1145.2010.00058]
 ZHAO Jing,FENG Wenqiang,QIN Yusheng,et al.Effects of Different Nitrogen Fertilizers on Cadmium Uptake by Wheat*[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):58.[doi:10.3724/SP.J.1145.2010.00058]
[6]李凝玉,卢焕萍,李志安,等.籽粒苋对土壤中镉的耐性及积累特征研究[J].应用与环境生物学报,2010,16(01):28.[doi:10.3724/SP.J.1145.2010.00028]
 LI Ningyu,LU Huanping,LI Zhian,et al.Cadmium tolerance and accumulation in Amaranthus hypochondriacus L.[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):28.[doi:10.3724/SP.J.1145.2010.00028]
[7]曹哲明,杨健.不同浓度Cd2+对鲤鱼基因组DNA的影响[J].应用与环境生物学报,2010,16(04):457.[doi:10.3724/SP.J.1145.2010.00457]
 CAO Zheming,YANG Jian.Effect of Cadmium at Different Concentrations on Genomic DNA of Common Carps[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):457.[doi:10.3724/SP.J.1145.2010.00457]
[8]湛方栋,何永美,李元,等.云南会泽废弃铅锌矿区和非矿区小花南芥根际真菌的耐镉性[J].应用与环境生物学报,2010,16(04):572.[doi:10.3724/SP.J.1145.2010.00572]
 ZHAN Fangdong,HE Yongmei,LI Yuan,et al.Cadmium Tolerance of Rhizosphere Fungi of Arabis alpina in Abandoned Lead-zinc Mining and Non-mining Area in Huize, Yunnan, China[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):572.[doi:10.3724/SP.J.1145.2010.00572]
[9]王萌,龚双姣,刘珊珊,等.表面活性剂对沉积物中纳米TiO2与Cd单一及复合污染生态毒理学效应的影响[J].应用与环境生物学报,2015,21(05):791.[doi:10.3724/SP.J.1145.2015.07034]
 WANG Meng,GONG Shuangjiao,LIU Shanshan,et al.Impacts of surfactants on the ecotoxicological effects of TiO2-NP and/or Cd contamination in sediments[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):791.[doi:10.3724/SP.J.1145.2015.07034]
[10]周伟,邓良基,邓欧平,等.成都平原菌渣还田土壤镉铅含量变化和环境容量[J].应用与环境生物学报,2017,23(04):701.[doi: 10.3724/SP.J.1145.2016.08038]
 ZHOU Wei,DENG Liangji**,DENG Ouping,et al.Isolation and identification of dicamba-degrading bacterium Ochrobactrum sp. 3-3 and investigation of its degradation characteristics[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):701.[doi: 10.3724/SP.J.1145.2016.08038]

更新日期/Last Update: 2019-06-25