|本期目录/Table of Contents|

[1]郭莹,王一明,巫攀,等.长期施用粪肥对水稻土中微生物群落功能多样性的影响[J].应用与环境生物学报,2019,25(03):593-602.[doi:10.19675/j.cnki.1006-687x.201809028]
 GUO Ying,WANG Yiming**,et al.Influence of long-term manure application in paddy soil on the functional diversity of microbial community[J].Chinese Journal of Applied & Environmental Biology,2019,25(03):593-602.[doi:10.19675/j.cnki.1006-687x.201809028]
点击复制

长期施用粪肥对水稻土中微生物群落功能多样性的影响
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年03期
页码:
593-602
栏目:
研究论文
出版日期:
2019-06-25

文章信息/Info

Title:
Influence of long-term manure application in paddy soil on the functional diversity of microbial community
作者:
郭莹王一明巫攀彭双
1中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室 南京 210008 2中国科学院大学 北京 100049
Author(s):
GUO Ying1 2 WANG Yiming1** WU Pan1 & PENG Shuang1
1 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China 2 University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
Biolog土壤微生物粪肥施用长期定位碳素分析
Keywords:
Biolog edaphon manure application long-term fertilization carbon analysis
分类号:
S154.36
DOI:
10.19675/j.cnki.1006-687x.201809028
摘要:
为明确长期施用粪肥对农田土壤碳转化周转的影响,以中国科学院常熟农业生态实验站粪肥长期定位试验田为研究对象,采用Biolog技术探究长期施用高量(9.0 t/hm2)或低量(4.5 t/hm2)粪肥(新鲜猪粪或发酵猪粪)对水稻土(0-40 cm)土壤微生物群落多样性及碳源利用情况的影响. 结果显示,耕层(0-20 cm)土壤所有施肥处理的微生物碳源利用率、Shannon、Simpson和McIntosh指数均显著高于无肥对照处理,且施肥处理的微生物活性与土壤全氮、有机质含量显著相关. 因子分析表明,不同施肥处理碳源利用类型存在差异,主要由主成分I进行解释,方差贡献率为71.31%;醣类和双亲化合物是导致施用粪肥处理与无肥对照间产生分异的主导碳源. 主成分分析发现醣类和羧酸是造成不同土层间样本点差异显著(P < 0.01)的主导碳源. 同时,新鲜粪肥和发酵粪肥处理土壤微生物碳源利用类型的分异主要在5-10 cm土层,低量处理组主要差异碳源为聚合物和醣类,高量粪肥处理组则主要是氨基酸和氨基化合物. 本研究表明虽然不同种类的粪肥及施肥量间存在差异,但长期施用粪肥有助于提高土壤微生物的碳源利用能力和群落多样性,增强土壤有机质的转化周转能力;因此,合理施用粪肥等有机肥对于土壤有机质提升、耕地保育、畜禽粪便资源化都具有重要意义. (图7 表6 参32)
Abstract:
To make the influence of long-term manure application on carbon turnover clear, and provide references for rational manure utilization, as well as improvement of soil fertility, the diversity of the microbial community, and carbon source utilization in paddy soil (0–40 cm) were studied. Tests were conducted by Biolog, after long-term fertilization under different treatments (with low/high level of fresh/composted manure application) at the Changshu Agro-ecological Experimental Station, of the Chinese Academy of Sciences. Statistical analyses showed that both the carbon source utilization by microbes and diversity indexes (Shannon, Simpson, and McIntosh) in fertilization treatments were significantly higher than those with CK treatment in the 0–20 cm plough layer, whereas there were no differences in the 20–40 cm layer. The microbial activity of fertilized treatments was significantly correlated with the content of soil organic matter and total nitrogen. Factor analysis indicated that different fertilization treatments could be recognized by various carbon utilization patterns, which were mainly explained by principal component I, and the variance contribution rate is 71.31%. Carbohydrates and amphiphilic were the dominant carbon sources that lead to the differentiation between applying manure and non-fertilizer treatments and were mainly affected by β-methyl-D-glucoside, N-acetyl-D-glucosamine, α-D-lactose, and pyruvic acid methyl ester. Principal component analysis showed that soil samples of various depth could be differentiated by principle component I, which explained the alteration of carbon source utilization (with a variance contribution rate of 71.67%) and the difference among points in each soil layer reached a significant level (P < 0.01). Carbohydrates and carboxylic acid were the dominant carbon sources contributing to PCAI, which were mainly affected by β-methyl-D-glucoside, N-acetyl-D-glucosamine, α-D-lactose, and D-xylose. Additionally, the differences in carbon source utilization types caused by fresh and fermented manure were mainly reflected in the 5–10 cm soil layer. For the group with low-quantity manure application, composted manure treatments had a higher utilization rate for polymers and carbohydrates than did the fresh ones, whereas in the high-amount fertilization group the utilization rates of amino acids and amides were higher in composted ones than that of fresh manure application with a more highly significant difference. Although there were differences between fresh and fermented pig manure, as well as different application amounts, the long-term application of fresh and fermented pig dung is helpful in the improvement of carbon source utilization capacity and community diversity of soil microorganisms; thus, enhancing the conversion and turnover capacity of soil organic matter. Therefore, the rational application of organic fertilizers, such as manure, is of great significance to the improvement of soil organic matter, the conservation of farmland, and the reclamation of livestock manure.

参考文献/References:

1. 张逸飞, 钟文辉, 李忠佩, 蔡祖聪. 长期不同施肥处理对红壤水稻土酶活性及微生物群落功能多样性的影响[J]. 生态与农村环境学报, 2006, 22 (4): 39-44 [Zhang YF, Zhong WH, Li ZP, Cai ZC. Effects of long-term different fertilization on soil enzyme activity and microbial community functional diversity in paddy soil derived from quaternary red clay [J]. J Ecol Rural Environ, 2006, 22 (4): 39-44]
2. Viktória F, ?va U, Emese V, Mónika M. Influence of red mud on soil microbial communities: application and comprehensive evaluation of the Biolog EcoPlate approach as a tool in soil microbiological studies [J]. Sci Total Environ, 2017, 595: 903-911
3. Kennedy AC, Smith KL. Soil microbial diversity and the sustainability of agriculture soils [J]. Plant Soil, 1995, 170 (1): 75 -86
4. Haack SK, Garchow H, Klug J, Forney J. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns [J]. Appl Environ Microbiol, 1995, 61 (4): 1458-1468
5. Rogers BF, TateⅢ RL. Temporal analysis of the soil microbial community along at op sequence in Pinel and soils [J]. Soil Biol Biochem, 2001, 33: 1389-1401
6. Baath E, Diaz R, Frostegard A, Campbell CD. Effect of metal-rich sludge amendments on the soil microbial community [J]. Appl Environ Microbiol, 1998, 64 (1): 238 -245
7. Zak JC, Willigm R, Moorhead DL, Wildman HG. Functional diversity of microbial communities: a quantitative approach [J]. Soil Biol Biochem, 1994, 26 (9): 1101 -1108
8. Zhang XP, Ning TY, Han HF, Sun T, Li G, Li ZJ, Rattan LAL. Effects of waxy maize relay intercropping and residue retention on rhizosphere microbial communities and vegetable yield in a continuous cropping system [J]. Pedosphere, 2018, 28 (1): 84-93
9. Garland JL, Millsa L. Classification and characterization of heterotrophic microbial communities of on the basis of patterns of community-level sole-carbon-source utilization [J]. Appl Environ Microbiol, 1991, 57: 2351-2359
10. 席劲瑛, 胡洪营, 钱易. Biolog方法在环境微生物群落研究中的应用[J]. 微生物学报, 2003, 43 (1): 138-141 [Xi JY, Hu HY, Qian Y. Application of Biolog system in the study of microbial community [J]. Acta Microbiol Sin, 2003, 43 (1): 138-141]
11. 张秀, 尚艺婕, 夏运生, 赵青青, 史静. 外加镉处理下生物质炭对土壤微生物碳代谢功能多样性的影响[J]. 农业环境科学学报, 2016, 35 (7): 1308-1313 [Zhang X, Shang YJ, Xia YS, Zhao QQ, Shi J. Effects of biochar on carbon metabolic capacity and functional diversity of soil microbial communities under Cd contamination [J]. J Agro-environ Sci, 2016, 35 (7): 1308-1313]
12. 林先贵. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社, 2010: 170-172 [Lin XG. Principles and Methods of Soil Microbiology Research [M]. Beijing: Higher Education Press, 2010: 170-172]
13. 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学出版社, 1999: 296-338 [Lu RK. Methods of Soil Agricultural Chemistry Analysis [M]. Beijing: Chinese Agricultural Science and Technology Press, 1999: 296-338]
14. Liu B, Li YX, Zhang XL, Wang J, Gao M. Effects of chlortetracycline on soil microbial communities: comparisons of enzyme activities to the functional diversity via Biolog EcoPlates? [J]. Europ J Soil Biol, 2015, 68: 69-76
15. Michiel R, Marja W, Sytske MD, Anton MB, Christian M, Dorothy S, Rachel EC, Anne Wi, Jaap B. Monitoring soil bacteria with community-level physiological profiles using Biolog? ECO-plates in the Netherlands and Europe [J]. Appl Soil Ecol, 2016, 97: 23-35
16. Kela PW, Jason AG, Matthias G, William A, Raymond L. Data transformations in the analysis of community-level substrate utilization data from microplates [J]. J Microbiol Methods, 2007, 69: 461- 469
17. Min L, Xiao M. Effect of heavy metals on substrate utilization pattern, biomass and activity of microbial communities in are claimed mining wasteland [J]. Ecotoxicol Environ Safety, 2007, 66: 217- 223
18. Anthony G, Donnell, Melanie S, Kourtev PS, Ehrenfeld JG, H?ggblom M. Plants and fertilizers as drivers of changes in microbial community structure and function in soil [J]. Plant Soil, 2001, 232: 135-145
19. 郑华, 欧阳志云, 方治国, 赵同谦. BIOLOG在土壤微生物群落功能多样性研究中的应用[J]. 土壤学报, 2004, 41 (3): 456-461 [Zhen H, Ouyang ZY, Fang ZG, Zhao TQ. Application of Biolog to study on soil microbial community functional diversity [J]. Acta Pedol Sin, 2004, 41 ( 3) : 456-461]
20. 夏昕. 长期施肥对红壤旱地和水田有机碳形态结构及微生物群落的影响[D]. 南京: 南京农业大学, 2015 [Xia X. Effects of long-term fertilization on organic carbon morphology and microflora in red upland and paddy soil [D]. Nanjing: Nanjing Agricultural University, 2015]
21. 靳振江. 耕作和长期施肥对稻田土壤微生物群落结构及活性的影响[D]. 南京: 南京农业大学, 2013 [Jin ZJ. Changes microbial community structure and activity of paddy soils with rice cultivation and long-term fertilization. Nanjing: Nanjing Agricultural University, 2015]
22. 邓文悦. 长期施肥对江西稻田土壤有机质与土壤微生物功能多样性的影响[D]. 西安: 西北大学, 2017 [Deng WY. Effects of long-term fertilization on soil organic matter and soil microbial functional diversity in Jiangxi paddy soil. Xi’an: Northwest University, 2017]
23. 戈峰. 现代生态学[M]. 北京: 科学出版社, 2002: 263-272 [Ge F. Modern Ecology [M]. Beijing: Science Press, 2002: 263-272]
24. 鲁顺保, 张艳杰, 陈成榕, 徐志红, 郭晓敏. 基于BIOLOG指纹解析三种不同森林类型土壤细菌群落功能差异[J]. 土壤学报, 2013, 50 (3): 618-623 [Lu SB , Zhang YJ, Chen CR, Xu ZH, Guo XM. Analysis of three different types of forest soil bacterial community functional differences based on BIOLOG fingerprint technology [J]. Acta Pedol Sin, 2013, 50 (3): 618-623]
25. 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38 (3): 298-310 [Wu LK, Lin XM, Lin WX. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates [J]. Chin J Plant Ecol, 2014, 38 (3): 298-310]
26. 李冰冰. 湖泊和土壤中的微生物群落对氮磷输入的响应研究[D]. 合肥: 中国科学技术大学, 2018
27. 任金凤, 周桦, 马强, 徐永刚, 姜春明, 潘飞飞, 宇万太. 长期施肥对潮棕壤有机氮组分的影响[J]. 应用生态学报, 2017, 28 (5): 1661-1667 [Ren JF, Zhou H, Ma Q,Xu YG, Jiang CM, Pan FF, Yu WT. Effects of long-term fertilization on organic nitrogen fractions in aquic brown soil [J]. Chin J Appl Ecol, 2017, 28 (5) : 1661-1667]
28. 郝晓晖, 胡荣桂, 吴金水, 汤水荣, 罗希茜. 长期施肥对稻田土壤有机氮、微生物生物量及功能多样性的影响[J]. 应用生态学报, 2010, 21 (6) : 1477-1484 [Hao XH, Hu RG, Wu JS, Tang SR, Luo XX. Effects of long-term fertilization on paddy soils organic nitrogen, microbial biomass, and microbial functional diversity [J]. Chin J Appl Ecol, 2010, 21 (6) : 1477-1484. ]
29. 贺云龙, 齐玉春, 彭琴, 董云社, 闫钟清, 李兆林. 外源碳氮添加对草地碳循环关键过程的影响[J]. 中国环境科学, 2018, 38 (3): 1133-1141 [He YL, Qi YC, Peng Q, Dong YS, Yan ZQ, Li ZL. Effects of exogenous carbon and nitrogen addition on the key process of carbon cycle in grassland ecosystem: a review [J]. Chin Environ Sci, 2018, 38 (3): 1133-114]
30. 侯晓杰, 汪景宽, 李世朋. 不同施肥处理与地膜覆盖对土壤微生物群落功能多样性的影响[J]. 生态学报, 2007 (02) : 655-661 [Hou X , Wang JK, Li SP. Effects of different fertilization and plastic-mulching on functional diversity of soil microbial community [J]. Acta Ecol Sin, 2007, 27 (2): 655- 661]
31. 唐海明, 肖小平, 李微艳, 孙耿, 程凯凯. 长期施肥对双季稻田根际土壤微生物群落功能多样性的影响[J]. 生态环境学报, 2016, 25 (3): 402-408 [Tang HM, Xiao XP, Li WY, Sun G, Cheng KK. Effects of long-term different fertilization regimes on the rhizospheric microbial community functional diversity in paddy field [J]. Ecol Environ Sci, 2016, 25 (3): 402-408]
32. 罗希茜, 郝晓晖, 陈涛, 邓婵娟, 吴金水, 胡荣桂. 长期不同施肥对稻田土壤微生物群落功能多样性的影响[J]. 生态学报, 2009, 29 (2): 740-748 [Luo XQ, Hao XH, Chen T, Deng CJ, Wu JS, Hu RG. Effects of long-term different fertilization on microbial community functional diversity in paddy soil [J]. Acta Ecol Sin, 2009, 29 (2): 740-748]
33.

相似文献/References:

[1]饶志明,赵有玺,李辉,等.太湖流域土壤微生物基因组总DNA分离纯化及其质粒文库的初步构建[J].应用与环境生物学报,2004,10(06):774.
 RAO Zhiming,et al..Extraction and purification of soil microbial genomic DNA from taihu area and primary construction of plasmid libraries[J].Chinese Journal of Applied & Environmental Biology,2004,10(03):774.
[2]段学军** 黄春晓.重金属镉对水田土壤微生物基因多样性的影响[J].应用与环境生物学报,2008,14(04):510.
[3]李世朋,蔡祖聪,杨浩.不同植被下红壤性质对细菌碳源利用的影响[J].应用与环境生物学报,2008,14(06):793.[doi:10.3724/SP.J.1145.2008.00793]
 LI Shipeng**,CAI Zucong & YANG Hao.Effect of Red Soil Properties under Different Vegetation Types on Bacterial Carbon Source Utilization[J].Chinese Journal of Applied & Environmental Biology,2008,14(03):793.[doi:10.3724/SP.J.1145.2008.00793]
[4]芦晓飞,赵志祥,谢丙炎,等.西藏米拉山高寒草甸土壤微生物DNA提取及宏基因组Fosmid文库构建[J].应用与环境生物学报,2009,15(06):824.[doi:10.3724/SP.J.1145.2009.00824]
 LU Xiaofei,ZHAO Zhixiang,XIE Bingyan,et al.DNA Extraction and Construction of a Metagenomic Fosmid Library of Alpine Meadow Soil from the Mila Mountains in Tibet, China[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):824.[doi:10.3724/SP.J.1145.2009.00824]
[5]周琳,束长龙,黄文坤,等.转双价抗真菌病害基因大豆对根际土壤微生物群落结构的影响[J].应用与环境生物学报,2010,16(04):509.[doi:10.3724/SP.J.1145.2010.00509]
 ZHOU Lin,SHU Changlong,HUANG Wenkun,et al.Community Structure of Microbes in Rhizosphere Soil of Transgenic Soybean Carrying Two Fungus-resistant Genes[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):509.[doi:10.3724/SP.J.1145.2010.00509]
[6]靳正忠,雷加强,李生宇,等.流动沙漠腹地灌木根际土壤微生物比较分析[J].应用与环境生物学报,2010,16(06):759.[doi:10.3724/SP.J.1145.2010.00759]
 JIN Zhengzhong,LEI Jiaqiang,LI Shengyu,et al.Variation in Rhizosphere Microbes of Three Shelter Shrubs in Drift Desert Hinterland in Xinjiang, China[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):759.[doi:10.3724/SP.J.1145.2010.00759]
[7]郑慧,祁士华,王志勇,等.高位池养虾对土壤微生物脂肪酸和土壤酶活及其表征的土壤质量的影响[J].应用与环境生物学报,2011,17(01):69.[doi:10.3724/SP.J.1145.2011.00069]
 ZHENH Hui,QI Shihua,WANG Zhiyong,et al.Effects of Shrimp Aquaculture on the Quality of Upland Pond Soil Indicated by Microbial FAME and Enzyme Activity[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):69.[doi:10.3724/SP.J.1145.2011.00069]
[8]陈法霖,张凯,郑华,等.PCR-DGGE技术解析针叶和阔叶凋落物混合分解对土壤微生物群落结构的影响[J].应用与环境生物学报,2011,17(02):145.[doi:10.3724/SP.J.1145.2011.00145]
 CHEN Falin,ZHANG Kai,ZHENG Hua,et al.Analyzing the Effect of Mixed Decomposition of Conifer and Broadleaf Litters on Soil Microbial Communities by Using PCR-DGGE[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):145.[doi:10.3724/SP.J.1145.2011.00145]
[9]王蓓,孙庚,罗鹏,等.模拟升温和放牧对高寒草甸土壤微生物群落的影响[J].应用与环境生物学报,2011,17(02):151.[doi:10.3724/SP.J.1145.2011.00151]
 WANG Bei,SUN Geng,LUO Peng,et al.Microbial Communities of Alpine Meadow Soil in the Eastern Qinghai-Tibetan Plateau Subjected to Experimental Warming and Grazing[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):151.[doi:10.3724/SP.J.1145.2011.00151]
[10]郝鲜俊,洪坚平,乔志伟.沼液对甘蓝连作土壤生物学性质的影响[J].应用与环境生物学报,2011,17(03):384.[doi:10.3724/SP.J.1145.2011.00384]
 HAO Xianjun,HONG Jianping,QIAO Zhiwei.Effect of Biogas Slurry on Biological Properties of Cabbage Continuous Cropping Soil[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):384.[doi:10.3724/SP.J.1145.2011.00384]
[11]罗倩,黄宝灵,唐治喜,等.新疆盐渍土3种植被类型土壤微生物碳源利用[J].应用与环境生物学报,2013,19(01):96.[doi:10.3724/SP.J.1145.2013.00096]
 LUO Qian,HUANG Baoling,TANG Zhixi,et al.Carbon Source Utilization of Microbes in Saline Soil of Three Vegetation Types in Xinjiang, China[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):96.[doi:10.3724/SP.J.1145.2013.00096]

更新日期/Last Update: 2019-06-25