|本期目录/Table of Contents|

 CHEN Xu,LIU Hongkai,WANG Qiang,et al.Leaf anatomical characteristics of 11 tree species in the homogeneous habitats of eastern Shandong province hills[J].Chinese Journal of Applied & Environmental Biology,2019,25(03):655-664.[doi:10.19675/j.cnki.1006-687x.201808008]





Leaf anatomical characteristics of 11 tree species in the homogeneous habitats of eastern Shandong province hills
1山东农业大学林学院,山东省土壤侵蚀与生态修复重点实验室 泰安 271018 2山东省林业外资与工程项目管理站 济南 250014 3威海市林业局 威海 264200
CHEN Xu1 LIU Hongkai1 WANG Qiang2 ZOU Hongyang3 ZHU Qiliang1 & WANG Yanping1**
1 Soil Erosion and Ecological Restoration Laboratory of Shandong Province, Forestry College of Shandong Agricultural University, Tai’an 271018, China 2 Shandong Forestry Foreign Investment and Project Management Office, Jinan 250014, China 3 Forest Bureau of Weihai City, Weihai 264200, China
homogeneous habitat arid mountain area leaf anatomical trait tree species selection
叶片是植物应对环境变化较为敏感的器官,叶解剖结构在一定程度上也体现出了树木对特殊生境的适应能力. 为阐明植物对干旱生境的适应特征,对鲁东丘陵石灰岩山地同质生境内11个树种叶片以及叶脉的解剖结构进行分析. 结果显示,各树种均为异面型叶,该类型叶片在解剖结构上具有显著的栅栏组织和海绵组织区分. 叶表皮厚度在不同树种之间无明显差异,但上表皮普遍较下表皮厚(上表皮平均厚度为34.66 μm,下表皮平均厚度为17.87 μm). 分别按乔、灌、藤3种生活型进行统计,发现叶片上下表皮厚度在生活型之间差异并不显著. 各树种叶片均具有较发达的栅栏组织,而海绵组织排列较为稀疏. 栅栏组织厚度与海绵组织厚度平均比值为2.42. 在叶脉解剖结构中,各树种1级叶脉木质部厚度与韧皮部比值在1.43-5.30之间,且在树种间有显著差异,但该比值在乔、灌和藤3种生活型之间的差异不显著. 叶脉解剖性状与叶片解剖性状存在显著相关(P < 0.01). 栅栏组织厚度与海绵组织厚度比值、叶脉木质部厚度在一定程度上表征了树种对干旱生境的适应能力. 本研究从叶解剖特性方面阐明了叶片对干旱生境的适应特征,可为未来干旱瘠薄山地植被修复树种选择提供参考. (图4 表4 参48 附图2)
Leaves serve as important and sensitive organs to environment changes. Leaf anatomical traits reflect the adaptation of trees to some special environments. Eleven co-existing tree species from the common environment of the limestone mountain area in eastern Shandong Province were selected. The seven anatomical traits of leaves and leaf veins were examined and recorded, including the upper epidermis thickness, palisade tissue thickness, spongy tissue thickness, lower epidermis thickness, main vascular diameter, xylem thickness, and phloem thickness. The results showed that the leaves of the 11 tree species were heterofacial and the differentiation of palisade cells and spongy tissues was obvious in the leaf cross section. The leaf epidermis thickness did not show significant differences among tree species; however, the upper epidermis thickness was generally larger than the lower epidermis thickness. The average thickness of the upper epidermis of the 11 species was 34.66 μm and the average thickness of the lower epidermis was 17.87 μm. The average thickness of leaf epidermis did not show obvious differences among arbor, shrubs, or vines. The obvious palisade tissues in all 11 tree species, although spongy tissues were arranged sparsely, could be considered an important index for the tolerance assessment of tree species to the arid environment. The average ratio of palisade tissue thickness to spongy tissue thickness of the 11 species was 2.42. Regarding the leaf vein anatomy, the ratios of xylem and phloem thickness in leaf veins were 1.43–5.30, showing significant differences among the 11 tree species. However, the ratios in three life type, arbor, shrub, and vine, did not differ. There were significant correlations among leaf vein diameter, xylem thickness, and phloem thickness in the vein (P < 0.01). To a certain extent, the ratios of palisade tissues and spongy tissue thickness, the xylem thickness in leaf vein might serve as important indices for the tolerance assessment of tree species to the arid environment. This study shows some relative characteristics of leaves to arid habitats according to leaf anatomical traits, which would provide some references for the selection of tree species for the vegetation restoration in arid limestone mountain areas in the future.


1. Klich MG. Leaf variation in Laeagnus angustifolia related to environmental heterogeneity [J]. Environ Exp Bot, 2002, 44 (3): 171-183
2. 季子敬, 全先奎, 王传宽. 兴安落叶松针叶解剖结构变化及其光合能力对气候变化的适应性[J]. 生态学报, 2013, 33 (21): 6967-6974 [Ji ZJ, Quan XK, Wang CK. Variations in leaf anatomy of Larix gmelinii reflect adaptation of its photosynthetic capacity to climate changes [J]. Acta Ecol Sin, 2013, 33 (21): 6967-6974]
3. He NP, Liu CC, Tian M, Li ML, Yang H, Yu GR, Guo DL, Smith MD, Yu Q, Hou JH. Variation in leaf anatomical traits from tropical to cold‐temperate forests and linkage to ecosystem functions [J]. Func Ecol, 2018, 32 (1): 10-19
4. 张金玲, 李玉灵, 庞梦丽, 朱辰光, 毕志乐. 臭柏异形叶解剖结构及其抗旱性的比较[J]. 西北植物学报, 2017, 37 (9): 1756-1763 [Zhang JL, Li YL, Pang ML, Zhu CG, Bi ZL. Comparison of drought resistance of anatomic structure in the heterophylly mechanism of Sabina vulgaris [J]. Acta Bot Bor-occid Sin, 2017, 37 (9): 1756-1763]
5. Hughes J, Hepworth C, Dutton C, Dunn JA, Hunt L, Stephens J, Cameron D, Waugh R, Gray JE. Reducing stomatal density in barley improves drought tolerance without impacting on yield [J]. Plant Physiol, 2017, 174 (2): 776-787
6. 王常顺, 汪诗平. 植物叶片性状对气候变化的响应研究进展[J]. 植物生态学报, 2015, 39 (2): 206-216 [Wang CS, Wang SP. A review of research on responses of leaf traits to climate change [J]. Chin J Plant Ecol, 2015, 39 (2): 206-216]
7. Kr?ber W, Heklau H, Bruelheide H. Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits [J]. Plant Biol, 2015, 17 (2): 373-383
8. Niinemets ?, Portsmuth A, Tobias M. Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation? [J]. Funct Ecol, 2007, 21 (1): 28-40
9. Sack L, Cowan PD, Holbrook NM. The major veins of mesomorphic leaves revisited: tests for conductive overload in Acer saccharum (Aceraceae) and Quercus rubra (Fagaceae) [J]. Am J Bot, 2003, 90 (1): 32-39
10. Sack L, Scoffoni C, Mckown AD, Frole K, Rawls M. Developmentally based scaling of leaf venation architecture explains global ecological patterns [J]. Nat Commun, 2012, 3: 837
11. Sack L, Holbrook NM. Leaf hydraulics [J]. Annu Rev Plant Biol, 2006, 57: 361-381
12. Sack L, Scoffoni C. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future [J]. New Phytol, 2013, 198 (4): 983-1000
13. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont B B, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. The worldwide leaf economics spectrum [J]. Nature, 2004, 428 (6985): 821-827
14. 陈莹婷, 许振柱. 植物叶经济谱的研究进展[J]. 植物生态学报, 2014, 38 (10): 1135-1153 [Chen YT, Xu ZZ. Review on research of leaf economics spectrum [J]. Chin J Plant Ecol, 2014, 38 (10): 1135-1153]
15. 李周, 赵雅洁, 宋海燕, 张静, 陶建平, 刘锦春. 不同水分处理下喀斯特土层厚度异质性对两种草本叶片解剖结构和光合特性的影响[J]. 生态学报, 2018, 38 (2): 721-732 [Li Z, Zhao YJ, Song HY , Zhang J, Tao JP, Liu JC. The effects of soil thickness heterogeneity on the anatomical structure and photosynthetic characteristics of two herbaceous leaves under different water treatments [J]. Acta Ecol Sin, 2018, 38 (2): 721-732]
16. Caringella MA, Bongers FJ, Sack L. Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants[J]. Plant Cell Environ, 2015, 38 (12): 2735-2746
17. Maréchaux I, Bartlett MK, Sack L, Baraloto C, Engel J, Joetzjer E, Chave J. Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest [J]. Func Ecol, 2015, 29 (10): 1268-1277
18. Li L, Ma ZQ, Niinemets ?, Guo DL. Three key sub-leaf modules and the diversity of leaf designs [J]. Front Plant Sci, 2017 (8): 1542
19. Li L, McCormack ML, Ma CE, Kong D, Zhang Q, Chen XY, Zeng H, Niinemets ?, Guo DL. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests [J]. Ecol Lett, 2015, 18 (9): 899-906
20. 邵水仙, 董智, 李红丽, 许婷婷. 不同造林模式对退化石灰岩山地土壤理化性质及水文效应的影响[J]. 水土保持学报, 2015, 29 (1): 263-267 [Shao SX, Dong Z, Li HL, Xu TT. Influence of different afforestation models on soil physical and chemical properties and hydrological effect in degradation limestone mountain [J]. J Res Soil Water Conserv, 2015, 29 (1): 263-267 ]
21. 李小倩, 杨吉华, 魏晓明. 鲁中南石灰岩山地针阔混交林土壤理化性状及水文效应[J]. 水土保持学报, 2016, 30 (1): 208-211 [Li XQ, Yang JH, Wei XM. Soil Physical and chemical properties and hydrological effects of coniferous and broadleaved mixed forest in limestone mountains [J]. J Res Soil Water Conserv, 2016, 30 (1): 208-211]
22. Qi XK, Wang KL, Zhang CH. Effectiveness of ecological restoration projects in a karst region of Southwest China assessed using vegetation succession mapping [J]. Ecol Eng, 2013, 54: 245-253
23. Xu ZZ, Shimizu H, Ito S, Yagasaki Y, Zou CJ, Zhou GS, Zheng YR. Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland [J]. Planta, 2014, 239 (2): 421-435
24. 王红梅, 包维楷, 李芳兰. 不同干旱胁迫强度下白刺花幼苗叶片的生理生化反应[J]. 应用与环境生物学报, 2008, 14 (6): 757-762 [Wang HM, Bao WK, Li LF. Physiological and biochemical responses of two-years-old sophora davidii seedling leaves to different water stresses [J]. Chin J Appl Environ Biol, 2008, 14 (6): 757-762]
25. 胡义, 胡庭兴, 胡红玲, 陈洪, 王彬, 李晗. 干旱胁迫对香樟幼树生长及光合特性的影响[J]. 应用与环境生物学报, 2014, 20 (4): 675-682 [Hu Y, Hu TX, Hu HL, Chen H, Wang B, Li H. Effects of drought stress on growth and photosynthetic characteristics of Cinnamomum camphora saplings [J]. Chin J Appl Environ Biol, 2014, 20 (4): 675-682]
26. 王勇, 梁宗锁, 龚春梅, 韩蕊莲, 于靖. 干旱胁迫对黄土高原4种蒿属植物叶形态解剖学特征的影响[J]. 生态学报, 2014, 34 (16): 4535-4548 [Wang Y, Liang ZS, Gong CM, Han RL, Yu J. The effect of drought stress on the leaf morphological and anatomical characteristics of 4 species of Artemisia in the Loess Plateau [J]. Acta Ecol Sin, 2014, 34 (16): 4535-4548]
27. 李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应[J]. 植物学通报, 2005, 22 (1): 118-127 [Li FL, Bao WK. Response and adaptation of plant leaf morphological and anatomical structure to environmental changes [J]. Chin Bull Bot, 2005, 22 (1): 118-127]
28. 吴丽君, 李志辉, 杨模华, 王佩兰. 赤皮青冈幼苗叶片解剖结构对干旱胁迫的响应[J]. 应用生态学报, 2015, 26 (12): 3619-3626 [Wu LJ, Li ZH, Yang MH, Wang PL. Response of leaf anatomical characteristics of Cyclobalanopsis gilva seedlings to drought stress [J]. J Appl Ecol, 2015, 26 (12): 3619-3626]
29. 严子柱, 满多清, 李得禄. 沙葱(Allium mongolicum)解剖结构与抗旱性[J]. 中国沙漠, 2015 (4): 890-894 [Yan ZZ, Man DQ, Li DL. The relationship between drought-resistance and anatomical structure of Allium mongolicum’s vegetative organs [J]. J Desert Res, 2015 (4): 890-894]
30. Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C. Cell wall metabolism in response to abiotic stress [J]. Plants, 2015, 4 (1): 112-166
31. Delzon S. New insight into leaf drought tolerance [J]. Funct Ecol, 2015, 29 (10): 1247-1249
32. Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets ?, Reich PB, Sack L, Villar V, Wang H, Wilf P. Global climatic drivers of leaf size [J]. Science, 2017, 357 (6354): 917-921
33. 李全发, 王宝娟, 安丽华, 吉成均. 青藏高原草地植物叶解剖特征[J]. 生态学报, 2013, 33 (7): 2062-2070 [Li QF, Wang BJ, An LH, Ji CJ. Anatomical characteristics of plant leaves in Qinghai Tibet Plateau [J]. Acta Ecol Sin, 2013, 33 (7): 2062-2070]
34. 夏尚光, 张金池, 梁淑英. 水分胁迫下3种榆树幼苗生理变化与抗旱性的关系[J]. 南京林业大学学报, 2008, 32 (3): 131-134 [Xia SG, Zhang JC, Liang SY. Relationship between drought resistance and physiological change of three elm trees seedling under water stress [J]. J Nanjing For Univ, 2008, 32 (3): 131-134]
35. Kunz J, L?ffler G, Bauhus J. Minor European broadleaved tree species are more drought-tolerant than Fagus sylvatica but not more tolerant than Quercus petraea [J]. For Ecol Manage, 2018, 414: 15-27
36. Merlin M, Perot T, Perret S, Korboulewsky N, Vallet P. Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine [J]. For Ecol Manage, 2015, 339: 22-33
37. 王青宁, 唐静, 衣学慧. 基于多元统计评价毛白杨无性系的抗旱性[J]. 西北林学院学报, 2005, 20 (4): 21-26 [Wang QN, Tang J, Yi XH. Evaluation on drought resistance of Populus tomentosa clones by multivariate statistics [J]. J Northwest For Univ, 2005, 20 (4): 21-26]
38. Tang S, Dong Y, Liang D, Zhang ZJ, Ye CY, Shuai P, Han X, Zhao Y, Yin WL, Xia XL, Analysis of the drought stress-responsive transcriptome of black cottonwood (Populus trichocarpa) using deep RNA sequencing [J]. Plant Mol Biol Rep, 2015, 33 (3): 424-438
39. Reich PB. The world-wide ‘fast-slow’plant economics spectrum: a traits manifesto [J]. J Ecol, 2014, 102 (2): 275-301
40. John GP, Scoffoni C, Buckley TN, Villar R, Poorter H, Sack L. The anatomical and compositional basis of leaf mass per area [J]. Ecol Lett, 2017, 20 (4): 412-425
41. Niklas KJ. A mechanical perspective on foliage leaf form and function [J]. New Phytol, 1999, 143 (1): 19-31
42. Maréchaux I, Bartlett MK, Gaucher P, Sack L, Chave J. Causes of variation in leaf-level drought tolerance within an Amazonian forest [J]. J Plant Hydraul, 2016, 3: e-004
43. Powell TL, Wheeler JK, de Oliveira AAR, da Costa ACL, Saleska SR, Meir P, Moorcroft PR. Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees [J]. Global Change Biol, 2017, 23 (10): 4280-4293
44. 崔宏安, 刘莉丽, 陈铁山, 刘浩凤, 霍斌. 葛藤不同类型叶耐旱结构的比较解剖学研究[J]. 西北植物学报, 2003, 23 (12): 2211-2215 [Cui HA, Liu LL, Chen TS, Liu HF, Huo B. The comparative anatomical studies on the drought resistant structures of kudzu leaves of different varieties [J]. Acta Bot Bor-Occid Sin, 2003, 23 (12): 2211-2215]
45. 卢广超, 许建新, 薛立, 刘斌, 李诗刚, 邵怡若. 干旱胁迫下 4 种常用植物幼苗的光合和荧光特性综合评价[J]. 生态学报, 2013, 33 (24): 7872-7881 [Lu GC, Xu JX, Xue L, Liu B, Li SG, Shao YR. Comprehensive evaluation on photosynthetic and fluorescence characteristics in seedlings of 4 drought resistance species [J]. Acta Ecol Sin, 2013, 33 (24): 7872-7881]
46. 张义, 王得祥, 宋彬, 吕迪, 王涛. 基于叶片解剖结构的西宁市11种城市森林植物抗旱性评价[J]. 西北农林科技大学学报, 2014, 42 (8): 86-92+98 [Zhang Y, Wang DX, Song B, Lü D, Wang T. Leaf anatomical structure based drought resistance evaluation of 11 urban forest plants in Xining city [J]. J NW Sci-Tech Univ Agric For, 2014, 42 (8): 86-92+98]
47. Brodribb TJ, Feild TS, Jordan GJ. Leaf maximum photosynthetic rate and venation are linked by hydraulics [J]. Plant Physiol, 2007, 144 (4): 1890-1898
48. Gerhold P, Cahill JF, Winter M, Bartish IV, Prinzing A. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better) [J]. Funct Ecol, 2015, 29 (5): 600-614

更新日期/Last Update: 2019-06-25