|本期目录/Table of Contents|

[1]许萌,陈程,谢方,等.以玉米粉/废弃毕赤酵母为混合原料高效发酵丁醇[J].应用与环境生物学报,2019,25(03):702-709.[doi:10.19675/j.cnki.1006-687x.201808006]
 XU Meng,CHEN Cheng,XIE Fang,et al.Effective butanol fermentation using corn starch and waste Pichia pastoris semi-solid mixture as the substrate[J].Chinese Journal of Applied & Environmental Biology,2019,25(03):702-709.[doi:10.19675/j.cnki.1006-687x.201808006]
点击复制

以玉米粉/废弃毕赤酵母为混合原料高效发酵丁醇
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年03期
页码:
702-709
栏目:
研究论文
出版日期:
2019-06-25

文章信息/Info

Title:
Effective butanol fermentation using corn starch and waste Pichia pastoris semi-solid mixture as the substrate
作者:
许萌陈程谢方罗洪镇丁健史仲平
1江南大学生物工程学院,工业生物技术教育部重点实验室 无锡 214122 2淮阴工学院生命科学与食品工程学院 淮安 223003
Author(s):
XU Meng1 CHEN Cheng1 XIE Fang1 LUO Hongzhen2 DING Jian1 & SHI Zhongping1**
1 Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China 2 School of Life Science & Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China
关键词:
丙酮-丁醇-乙醇(ABE)发酵丙酮丁醇梭菌丁醇固体废弃物资源化/减量化糖利用效率
Keywords:
acetone–butanol–ethanol (ABE) fermentation Clostridium acetobutylicum butanol waste solids recirculation & reduction starch sugar utilization yield
分类号:
TQ92
DOI:
10.19675/j.cnki.1006-687x.201808006
摘要:
丙酮丁醇梭菌发酵生产ABE(丙酮-丁醇-乙醇)溶剂的传统原料是玉米淀粉,价格贵,生产基本亏损. 重组毕赤酵母废弃物含有丰富的碳水化合物和蛋白质,有望替代淀粉原料. 采用NaOH处理固态废弃毕赤酵母形成废酵母固/液悬浊液,发酵通过降低初始玉米粉用量并在ABE发酵进入到产溶剂期后添加废酵母悬浊液进行. 对初始玉米粉用量、废酵母/NaOH投料量进行了优化,结果表明:它们的最佳用量分别为8%、80 g/L、6-10 g/L. 在此条件下,100 mL厌氧瓶下的丁醇产量可以稳定在9.0-12.0 g/L的较高水平,比8%玉米粉培养基的对照提高80%-120%,与15%玉米粉培养基的对照基本持平;与对照组相比,总糖的利用效率可以从50%大幅提高到超过90%的水平;玉米粉用量可以节省57%以上;酵母废弃物最多有52%的碳水化合物可以有效地转化成气体/液体产物. 本研究表明以玉米粉/废弃毕赤酵母为混合原料发酵丁醇,可以同时实现固体废物的资源化和减量化、淀粉原料的高效利用和节省化,提高了ABE发酵的综合经济性能. (图3 表6 参23)
Abstract:
Developing a novel corn starch and waste Pichia pastoris semi-solid mixture substrate system for the acetone–butanol–ethanol (ABE) fermentation process can increase the low sugar utilization yield of traditional ABE fermentation, save on the usage and costs of raw materials, and reduce the amount of waste P. pastoris semi-solid produced and increase its reutilization. Semi-solid waste yeast was treated with NaOH to form solid-liquid suspensions, and then the pH of the suspensions was restored to 5-6 using H2SO4. The initial corn starch content was reduced from 15 to 8% to start the fermentation, and then the pretreated suspensions were added to a broth, where the ABE fermentation was then induced to enter the solventogenesis phase (after ~24 h) by supplementing the suspension with a suspension:broth mixture with a volume ratio of 1:4. Fermentation was implemented either in 100 mL anaerobic bottles or in a 7 L anaerobic fermenter. The optimal initial doses of corn starch, waste yeast suspension, and NaOH to use were identified as 8%, 80 g/L, and 6-10 g/L, respectively. With this mixture-substrate system, the butanol concentration increased and stabilized around 9.0-12.0 g/L, which was 80%-120% higher than that obtained with an 8 or 15% corn starch-based substrate, the total sugar utilization yield was greatly increased from below 50% to more than 90%, more than 57% of corn starch was saved, and a maximum 52% of the carbohydrates in the waste yeast semi-solid could be effectively reutilized or digested for gasification/liquefaction. A novel corn starch-waste yeast semi-solid mixture substrate-based ABE fermentation process was proposed based on the results of this study. This system simultaneously consumed a maximum 52% of the carbohydrates in the semi-solid waste for the formation of gaseous or liquid products to reduce the amount of waste semi-solid produced, increased the total sugar yield from 50% (in controls) to over 90%, stably maintained ABE/butanol concentrations of at least over 85% of the levels obtained using a 15% corn starch-based substrate, and saved over 57% of the expensive corn starch that would otherwise have to be used.

参考文献/References:

1 Sang YL, Jin HP, Jang SH, Nielsen LK, Kim J, Jung KS. Fermentative butanol production by Clostridia [J]. Biotechnol Bioeng, 2008, 101 (2): 209-228
2 Dürre P. Biobutanol: an attractive biofuel [J]. Biotechnol J, 2007, 2: 1525-1534
3 Wu H, Nithyanandan K, Zhang J, Lin YL, Lee TH, Lee CF, Zhang CH. Impacts of acetone-butanol-ethanol (ABE) ratio on spray and combustion characteristics of ABE-diesel blends [J]. Appl Energy, 2015, 149: 367-378
4 Qureshi N, Cotta MA, Saha BC. Bioconversion of barley straw and corn stover to butanol (a biofuel) in integrated fermentation and simultaneous product recovery bioreactors [J]. Food Bioprod Process, 2014, 92 (3): 298-308
5 Maiti S, Gallastegui G, Suresh G, Sarma SJ, Brar SK, Drogui P, LeBihan Y, Buelna G, Verma M, Soccol CR. Hydrolytic pre-treatment methods for enhanced biobutanol production from agro-industrial wastes [J]. Bioresour Technol, 2018, 249: 673-683
6 Macauley-Patrick S, Fazenda ML, Mcneil B, Harvey LM. Heterologous protein production using the Pichia pastoris expression system [J]. Yeast, 2005, 22 (4): 249-270
7 Wang F, Wang XJ, Yu XL, Fu L, Fu L, Liu YY, Ma LX, Zhai C. High-level expression of endo-beta-N-acetylglu cosaminidase H from streptomyces plicatus in Pichia pastoris and its application for the deglycosylation of glycoproteins [J]. PLoS ONE, 2015, 10 (3): e0120458
8 陈超男. 巴斯德毕赤酵母多糖的分离纯化及生物活性研究 [D]. 大连: 大连理工大学, 2011 [Chen CN. Isolation, purification and bioactivities of polysaccharide from Pichia pastoris [D]. Dalian: Dalian University of Technology, 2011]
9 Li X, Shi ZP, Li Z. Increasing butanol/acetone ratio and solvent productivity in ABE fermentation by consecutively feeding butyrate to weaken metabolic strength of butyrate loop [J]. Bioproc Biosyst Eng, 2014, 37 (8): 1609-1616
10 罗洪镇. 不同底物流加/供氧和发酵还原力调控模式下典型发酵产物合成的关键技术[D]. 无锡: 江南大学, 2016 [Luo HZ. The key technologies of synthesizing typical fermentation products under different substrates feedings/oxygen supply and reductive power regeneration strategies [D]. Wuxi: Jiangnan University, 2016]
11 Zhang L, Yang Y, Shi ZP. Performance optimization of property-improved biodiesel manufacturing process coupled with butanol extractive fermentation [J]. Chin J Biotechnol, 2008, 24: 1943-1948
12 黄广民, 陈祎平, 符刘冰. 椰子壳中甘露聚糖含量的测定 [J]. 广西化工, 2001, 30 (2): 33-36 [Huang GM, Chen WP, Fu LB. Determination of Mannan in Coconut Shell [J]. Guangxi Chem Ind, 2001, 30 (2): 33-36]
13 Li X, Li Z, Zheng JP, Shi ZP, Li L. Yeast extract promotes phase shift of bio-butanol fermentation by Clostridium acetobutylicum ATCC824 using cassava as substrate [J]. Bioresour Technol, 2012, 125: 43-51
14 钟国清. 饲料用硫酸钠含量的快速测定 [J]. 饲料博览, 2001 (3): 26-27 [Zhong GQ. The rapid determination of sodium sulphate in feedstock[J]. Feed Expo, 2001 (3): 26-27]
15 谢方, 王浩, 许萌, 丁健, 罗洪镇, 史仲平. 外添少量电子受体强化丙丁梭菌丙酮-丁醇-乙醇发酵的丁醇合成[J]. 化工进展, 2018, 37 (5): 1940-1948 [Xie F,Wang H,Xu M,Ding J,Luo HZ,Shi ZP. Enhancing butanol synthesis in ABE fermentation by Clostridium acetobutylicum via supplementing small amount of electron receptors [J]. Chem Ind Eng Prog, 2018, 37 (5): 1940-1948
16 Masion E, Amine J, Marczak R. Influence of amino acid supplements on the metabolism of Clostridium acetobutylicum [J]. FEMS Microbiol Lett, 1987, 43 (3): 269-274
17 Heluane H, Evans MR, Dagher SF, Bruno-Bárcena JM. Meta-analysis and functional validation of nutritional requirements of solventogenic Clostridia growing under butanol stress conditions and coutilization of D-glucose and D-xylose [J]. Appl Environ Microbiol, 2011, 77 (13): 4473-4485
18 Luo HZ, Zhang JS, Wang H, Chen R, Shi ZP, Li X, Ding J. Effectively enhancing acetone concentration and acetone/butanol ratio in ABE fermentation by a glucose/acetate co-substrate system incorporating with glucose limitation and C.acetobutylicum/S.cerevisiae co-culturing [J]. Biochem Eng J, 2017, 118: 132-142
19 社団法人日本エネルギー学会. バイオマスハンドブック [M]. 東京: オーム社, 2004: 170 [Japan Energy Association. Biomass Handbook [M]. Tokyo: Ohmsha publication Co., 2004: 170]
20 Gheshlaghi R, Scharer JM, Mooyoung M, Chou CP. Metabolic pathways of clostridia for producing butanol [J]. Biotechnol Adv, 2009, 27 (6): 764-781
21 社団法人日本エネルギー学会. バイオマスハンドブック [M]. 東京: オーム社, 2004: 153 [Japan Energy Association. Biomass Handbook [M]. Tokyo: Ohmsha publication Co., 2004: 153]
22 郑会. 太湖藻浆梭菌鉴定与须白蚁Hospitalitermes sp. 肠道内可培养厌氧细菌的多样性[D]. 武汉: 华中师范大学, 2015 [Zheng H. Identification of Clostridium strains in Taihu and the diversity of culturable anaerobic bacteria from the gut of Hospitaletmes sp. [D]. Wuhan: Central China Normal University, 2015]
23 朱红蕾, 杨海龙. 从废弃毕赤酵母提取甘露聚糖的研究 [J]. 温州大学学报(自然科学版), 2012, 33 (1): 17-21 [Zhu HL, Yang HL. Study on extraction of mannan from wasted Pichia pastoris [J]. J Wenzhou Univ (Nat Sci Ed), 2012, 33 (1): 17-21]

相似文献/References:

[1]吕彤,刘扬,赵青,等.烯酮还原酶基因的克隆与优化表达[J].应用与环境生物学报,2011,17(01):87.[doi:10.3724/SP.J.1145.2011.00087]
 LÜ,Tong,LIU Yang,et al.Cloning and Optimizing Expression of Enoate Reductase Gene from Clostridium acetobutylicum in Escherichia coli[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):87.[doi:10.3724/SP.J.1145.2011.00087]
[2]龙飞,靳艳玲,赵云,等.丙酮丁醇梭菌Clostridium acetobutylicum CICC 8012发酵鲜芭蕉芋生产丁醇[J].应用与环境生物学报,2013,19(01):54.[doi:10.3724/SP.J.1145.2013.00054]
 LONG Fei,JIN Yanling,ZHAO Yun,et al.Optimization of Butanol Production from Canna edulis Ker by Clostridium acetobutylicum Using Response Surface Methodology[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):54.[doi:10.3724/SP.J.1145.2013.00054]
[3]李仁强,靳艳玲,郜晓峰,等.硫酸亚铁促进Clostridium acetobutylicum CICC8012发酵麦秸水解液产丁醇[J].应用与环境生物学报,2015,21(03):447.[doi:10.3724/SP.J.1145.2014.04012]
 LI Renqiang,JIN Yanling,GAO Xiaofeng,et al.Ferrous sulfate improving buanol production of wheat straw hydrolysate by Clostridium acetobutylicum CICC8012[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):447.[doi:10.3724/SP.J.1145.2014.04012]

更新日期/Last Update: 2019-06-25