|本期目录/Table of Contents|

[1]丁彦强,方扬,靳艳玲,等.基于叶绿体基因组的浮萍亚科系统进化[J].应用与环境生物学报,2017,23(2):215-219.[doi:10.3724/SP.J.1145.2016.04036]
 DING Yanqiang,FANG Yang,et al.Systematic evolution of Lemnoideae determined based on chloroplast genome analysis[J].Chinese Journal of Applied & Environmental Biology,2017,23(2):215-219.[doi:10.3724/SP.J.1145.2016.04036]
点击复制

基于叶绿体基因组的浮萍亚科系统进化()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年第2期
页码:
215-219
栏目:
研究论文
出版日期:
2017-04-25

文章信息/Info

Title:
Systematic evolution of Lemnoideae determined based on chloroplast genome analysis
作者:
丁彦强方扬靳艳玲赵海何开泽
1中国科学院成都生物研究所 成都 610041 2中国科学院大学 北京 100049 3中国科学院环境与应用微生物重点实验室 成都 610041
Author(s):
DING Yanqiang1 2 FANG Yang1 3 JIN Yanling1 3 ZHAO Hai 1 & HE Kaize1**
1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Key Laboratory of Environment and Applied Microbiology, Chinese Academy of Sciences, Chengdu 610041, China
关键词:
浮萍少根紫萍叶绿体基因组组装进化
Keywords:
Lemnoideae Landoltia punctata chloroplast genome assembly evolution
分类号:
Q949.717.301
DOI:
10.3724/SP.J.1145.2016.04036
摘要:
由于浮萍形态高度退化,其系统进化研究较为困难,基于叶绿体基因组研究浮萍亚科系统进化对解决该问题具有重要意义. 通过过滤全DNA数据(即包含细胞内的核DNA、叶绿体DNA和线粒体DNA的测序数据)和直接提取叶绿体DNA测序两种方法组装叶绿体基因组,然后分别基于rbcL基因和叶绿体全基因组序列构建浮萍亚科系统发育树,并比较浮萍叶绿体基因组大小. 经比对发现,通过两种方法得到的Landoltia punctata ZH0051叶绿体基因组完全一致,全长均为171 013 bp,序列相似度100%. 基于叶绿体全基因组序列构建浮萍亚科系统发育树的节点置信值都达到了1,确认了浮萍亚科的进化次序为多根紫萍属、少根紫萍属、绿萍属、扁平无根萍属、芜萍属. 浮萍亚科中叶绿体基因组最大的为少根紫萍属(171 kb),最小的为绿萍属(166 kb). 本研究表明过滤全DNA数据组装出的浮萍叶绿体基因组是可靠的;浮萍叶绿体基因组大小虽有所差异,但随进化没有明确的扩张或收缩的趋势. (图2 表3 参27)
Abstract:
Because of the highly morphological degeneration of Lemnoideae, systematic study on their evolution is difficult. Chloroplast genome is significant for the evolution explanation of Lemnoideae. In this study, chloroplast genomes were assembled using two methods: filtering the total DNA data (nuclear DNA, chloroplast DNA, and mitochondrial DNA) and direct chloroplast DNA extraction and sequencing. The phylogenetic trees were separately constructed based on the complete chloroplast genome sequences and the rbcL gene. The Lemnoideae chloroplast genomes sizes were compared. The results showed that the chloroplast genomes of Landoltia punctata ZH0051 obtained using the two methods were identical with a total length of 171 013 bp and sequence similarity of 100%. A credible phylogenetic tree was constructed based on the complete chloroplast genome sequences, which confirmed the evolutionary order of this subfamily as follows: Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia. The chloroplast genomes sizes were different (the largest, Landoltia (171 kb) and the smallest, Lemna (166 kb)). The results suggested that assembling duckweed chloroplast genome by filtering the total DNA data is a reliable method. The chloroplast genomes sizes showed no obvious trend of expansion or contraction.

参考文献/References:

1 Zhao Y, Fang Y, Jin Y, Huang J, Bao S, Fu T, He Z, Wang F, Zhao H. Potential of duckweed in the conversion of wastewater nutrients to valuable biomass: a pilot-scale comparison with water hyacinth [J]. Bioresour Technol, 2014, 163: 82-91
2 Zhao H, Appenroth K, Landesman L, Salmeán AA, Lam E. Duckweed rising at Chengdu: summary of the 1st International Conference on Duckweed Application and Research [J]. Plant Mol Biol, 2012, 78 (6): 627-632
3 Su H, Zhao Y, Jiang J, Lu Q, Li Q, Luo Y, Zhao H,Wang M. Use of duckweed (Landoltia punctata) as a fermentation substrate for the production of higher alcohols as biofuels [J]. Energy Fuels, 2014, 28 (5): 3206-3216
4 Tao X, Fang Y, Xiao Y, Jin Y, Ma X, Zhao Y, He K, Zhao H, Wang H. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation [J]. Biotechnol Biofuels, 2013, 6 (1): 1-15
5 Xiao Y, Fang Y, Jin Y, Zhang G, Zhao H. Culturing duckweed in the field for starch accumulation [J]. Ind Crops Prod, 2013, 48: 183-190
6 Liu Y, Fang Y, Huang M, Jin Y, Sun J, Tao X, Zhang G, He K, Zhao Y, Zhao H. Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) II: transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk [J]. Biotechnol Biofuels, 2015, 8 (1): 64-75
7 Luo Y, Ma PF, Li HT, Yang JB, Wang H, Li DZ. Plastid phylogenomic analyses resolve tofieldiaceae as the root of the early diverging monocot order alismatales [J]. Genome Biol Evol, 2016, 8 (3): 932-945
8 Mardanov AV, Ravin NV, Kuznetsov BB, Samigullin TH, Antonov AS, Kolganova TV, Skyabin KG. Complete sequence of the duckweed (Lemna minor) chloroplast genome: structural organization and phylogenetic relationships to other angiosperms [J]. J Mol Evol, 2008, 66 (6): 555-564
9. Wang W, Messing J. High-throughput sequencing of three Lemnoideae (duckweeds) chloroplast genomes from total DNA [J]. PLoS ONE, 2011, 6 (9): e24670
10. Demczuk W, Lynch T, Martin I, Van Domselaar G, Graham M, Bharat A, Allen V, Hoang L, Lefebvre B, Tyrrell G. Whole-genome phylogenomic heterogeneity of Neisseria gonorrhoeae isolates with decreased cephalosporin susceptibility collected in Canada between 1989 and 2013 [J]. J Clin Microbiol, 2015, 53 (1): 191-200
11 Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler [J]. GigaScience, 2012, 1 (1): 1-6
12 McGinnis S, Madden TL, BLAST: at the core of a powerful and diverse set of sequence analysis tools [J]. Nucl Acids Res, 2004, 32 (Suppl 2): W20-W25
13 Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J. SOAP2: an improved ultrafast tool for short read alignment [J]. Bioinformatics, 2009, 25 (15): 1966-1967
14 Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs [J]. Genome Res, 2008, 18 (5): 821-829
15 Lee WI, Lee G. From natural language to shell script: a case-based reasoning system for automatic UNIX programming [J]. Expert Syst Appl, 1995, 9 (1): 71-79
16 Berard S, Chateau A, Pompidor N, Guertin P, Bergeron A, Swenson KM. Aligning the unalignable: bacteriophage whole genome alignments [J]. Bmc Bioinformatics, 2016, 17: 30-42
17 Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE [J]. Bioinformatics, 2011, 27 (4): 578-579
18 Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller [J]. Genome Biol, 2012, 13 (6): R56
19 Kim K, Lee SC, Lee J, Yu Y, Yang K, Choi BS, Koh HJ, Waminal NE, Choi HI, Kim NH, Jang W, Park HS, Lee J, Lee HO, Joh HJ, Lee HJ, Park JY, Perumal S, Jayakodi M, Lee YS, Kim B, Copetti D, Kim S, Kim S, Lim KB, Kim YD, Lee J, Cho KS, Park BS, Wing RA,Yang TJ. Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species [J]. Sci Rep, 2015, 5: 15655
20 Wyman SK, Jansen RK,Boore JL. Automatic annotation of organellar genomes with DOGMA [J]. Bioinformatics, 2004, 20 (17): 3252-3255
21 Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG,Qiu Y-L. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL [J]. Ann Missouri Bot Garden, 1993, 80: 528-580
22 Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R. Clustal W and Clustal X version 2.0 [J]. Bioinformatics, 2007, 23 (21): 2947-2948
23 Williams AV, Boykin LM, Howell KA, Nevill PG, Small I. The complete sequence of the Acacia ligulata chloroplast genome reveals a highly divergent clpP1 gene [J]. PLoS ONE, 2015, 10 (5): e0125768
24 王艇, 苏应娟, 朱建明. 叶绿体rbcL基因序列在植物系统学研究中的应用[J]. 武汉植物学研究, 1999, 17 (A09): 8-14 [Wang T, Su YJ, Zhu JM, The applications of chloroplast rbcL gene sequences to plant systematic studies [J]. J Wuhan Bot Res, 1999, 17 (A09): 8-14]
25 Zhang T, Fang Y, Wang X, Deng X, Zhang X, Hu S,Yu J. The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organellar genomes [J]. PLoS ONE, 2012, 7 (1): e30531
26 Les DH, Crawford DJ, Landolt E, Gabel JD, Kimball RT. Phylogeny and systematics of Lemnaceae, the duckweed family [J]. Syst Bot, 2002, 27 (2): 221-240
27 Wang W, Kerstetter RA, Michael TP. Evolution of genome size in duckweeds (Lemnaceae) [J]. J Bot, 2011, 2011. DOI: 10.1155/2011/57031

相似文献/References:

[1]陈兰钗,方扬,靳艳玲,等.浮萍(Lemna aequinoctialis)干粉对Pb2+的吸附[J].应用与环境生物学报,2013,19(06):1046.[doi:10.3724/SP.J.1145.2013.01046]
 CHEN Lanchai,FANG Yang,JIN Yanling,et al.Biosorption of Pb2+ by Dried Powder of Duckweed (Lemna aequinoctialis)[J].Chinese Journal of Applied & Environmental Biology,2013,19(2):1046.[doi:10.3724/SP.J.1145.2013.01046]
[2]鲍姝,方扬,靳艳玲,等.污水氮磷浓度对云南本地浮萍生长及氮磷去除的影响[J].应用与环境生物学报,2014,20(01):56.[doi:10.3724/SP.J.1145.2014.00056]
 BAO Shu,FANG Yang,JIN Yanling,et al.Influence of ammonium and phosphate concentration of sewage on the growth, nitrogen and phosphorus removal of duckweed in Yunan[J].Chinese Journal of Applied & Environmental Biology,2014,20(2):56.[doi:10.3724/SP.J.1145.2014.00056]
[3]张浩,方扬,靳艳玲,等.耐高氨氮浮萍的筛选及优势品种的生长特性[J].应用与环境生物学报,2014,20(01):63.[doi:10.3724/SP.J.1145.2014.00063]
 ZHANG Hao,FANG Yang,JIN Yanling,et al.Screening for high ammonia tolerant duckweed and growth characteristics of dominant species[J].Chinese Journal of Applied & Environmental Biology,2014,20(2):63.[doi:10.3724/SP.J.1145.2014.00063]
[4]谢天艳,何开泽,赵海,等.4种浮萍提取物的抗菌活性和黄酮含量[J].应用与环境生物学报,2014,20(02):238.[doi:10.3724/SP.J.1145.2014.00238]
 XIE Tianyan,HE Kaize,ZHAO Hai,et al.Antimicrobial activities and flavonoid contents of the extracts from four strains of duckweed[J].Chinese Journal of Applied & Environmental Biology,2014,20(2):238.[doi:10.3724/SP.J.1145.2014.00238]
[5]孙蛟龙,方扬,靳艳玲,等.浮萍转录组数据SSR位点的生物信息学分析[J].应用与环境生物学报,2015,21(03):401.[doi:10.3724/SP.J.1145.2014.04027]
 SUN Jiaolong,FANG Yang,JIN Yanling,et al.Bioinformatic analysis on SSR information in duckweed transcriptome[J].Chinese Journal of Applied & Environmental Biology,2015,21(2):401.[doi:10.3724/SP.J.1145.2014.04027]
[6]唐利萍,方扬,靳艳玲,等.重金属镉超富集浮萍品种筛选及其对水体中镉的去除效果[J].应用与环境生物学报,2015,21(05):830.[doi:10.3724/SP.J.1145.2015.04023]
 TANG Liping,FANG Yang,JIN Yanling,et al.Preliminary study on screening of cadmium hyperaccumulator duckweed strain and removal of cadmium in water[J].Chinese Journal of Applied & Environmental Biology,2015,21(2):830.[doi:10.3724/SP.J.1145.2015.04023]
[7]李志丹,方扬,靳艳玲,等.少根紫萍转录因子及其营养胁迫下的表达[J].应用与环境生物学报,2018,24(01):97.[doi: 10.19675/j.cnki.1006-687x.2017.04015]
 LI Zhidan,FANG Yang,et al.Transcription factors and their expression in $Landoltia punctata$ under nutrient starvation[J].Chinese Journal of Applied & Environmental Biology,2018,24(2):97.[doi: 10.19675/j.cnki.1006-687x.2017.04015]
[8]李 琪 方 扬 许亚良 赖 烦 苏羽华 靳艳玲 赵 海**.少根紫萍对微污染地表水的净化及淀粉积累*[J].应用与环境生物学报,2018,24(06):1.[doi:10.19675/j.cnki.1006-687x.2018.02023]
 LI Qi,,et al.Duckweed Landoltia punctate purifying micro-polluted surface water andproducing starch*[J].Chinese Journal of Applied & Environmental Biology,2018,24(2):1.[doi:10.19675/j.cnki.1006-687x.2018.02023]
[9]王明秀,栾威 马欣荣 陶 向** 赵 云**.少根紫萍淀粉合成关键基因对寡营养胁迫的响应*[J].应用与环境生物学报,2018,24(06):1.[doi:10.19675/j.cnki.1006-687x.2018.04021]
 WANG Mingxiu,LUAN Wei,MA Xinrong,et al.Research of starch biosynthesis related genes and the responses to nutrition starvation in Landoltia punctata *[J].Chinese Journal of Applied & Environmental Biology,2018,24(2):1.[doi:10.19675/j.cnki.1006-687x.2018.04021]

更新日期/Last Update: 2017-04-25