|本期目录/Table of Contents|

[1]苏炜华,黄宁,凌辉,等.甘蔗乙醇脱氢酶基因的克隆与表达分析[J].应用与环境生物学报,2017,23(03):474-481.[doi:2016.0704]
 SU Weihua,HUANG Ning,LING Hui,et al.Cloning and expression of ScADH from sugarcane[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):474-481.[doi:2016.0704]
点击复制

甘蔗乙醇脱氢酶基因的克隆与表达分析()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年03期
页码:
474-481
栏目:
研究论文
出版日期:
2017-06-25

文章信息/Info

Title:
Cloning and expression of ScADH from sugarcane
作者:
苏炜华黄宁凌辉刘峰曾瑞金苏亚春吴期滨高世武阙友雄
福建农林大学农业部福建甘蔗生物学与遗传育种重点实验室 福州 350002
Author(s):
SU Weihua HUANG Ning LING Hui LIU Feng ZENG Ruijin SU Yachun WU Qibin GAO Shiwu & QUE Youxiong
Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
关键词:
甘蔗ADH基因生物信息学实时荧光定量PCR非生物胁迫生物胁迫
Keywords:
sugarcane ADH gene bioinformatics real-time quantitative PCR abiotic stress biotic stress
分类号:
S435.661.034 : Q78
DOI:
2016.0704
摘要:
乙醇脱氢酶基因(Alcohol dehydrogenase,ADH)在植物抵御涝害、冷害、干旱等逆境中起着重要作用. 基于前期已构建的甘蔗受黑穗病菌胁迫后基因差异表达的抑制消减杂交(Suppression subtractive hybridization,SSH)文库,利用电子克隆和RT-PCR技术,从甘蔗品种ROC22中获得一条ADH基因的cDNA全长序列,命名为Sugarcane Alcohol Dehydrogenase(ScADH;GenBank登录号为KJ577593). 生物信息学分析显示,ScADH基因全长为1 644 bp,含有1 140 bp的开放阅读框,编码一个379个氨基酸的蛋白质. ScADH蛋白为稳定、亲水的酸性非分泌蛋白,定位于叶绿体基质上. 蛋白二级结构元件多为无规则卷曲,具有典型的ADH蛋白结构域以及NAD和锌的结合位点. 实时荧光定量PCR(Real-time quantitative PCR)表达分析表明,该基因在甘蔗各组织中组成型表达,其中根中表达量最高,而叶中的表达量最低. 在SA和MeJA胁迫下,ScADH基因的表达趋势为“先扬后抑”,均在胁迫6 h达到最大值,分别为对照的7.34倍和11.81倍. 在ABA胁迫下,该基因均上调表达,在胁迫12 h达到最大值,为对照的5.53倍. 在黑穗病菌胁迫下,该基因在感病品种ROC22中的表达受到抑制,而在抗病品种YC05-179中的表达模式为“先抑后扬”. 综上推测ScADH基因在甘蔗应答非生物胁迫和生物胁迫中发挥重要作用. (图7 表4 参42)
Abstract:
The alcohol dehydrogenase gene (ADH) plays an important role in plant responses to abiotic stress such as waterlogging, chilling, and drought. Based on suppression subtractive hybridization libraries constructed from sugarcane with smut infection, a full-length cDNA sequence of sugarcane ADH was cloned by in silico cloning, followed by RT-PCR amplification. This gene was named Sugarcane Alcohol Dehydrogenase, ScADH (GenBank Accession Number: KJ577593). Bioinformatics analysis showed that ScADH is 1 644 bp in length and contains a complete open reading frame of 1 140 bp, encoding a 379-amino acid sugarcane ADH protein. The stable, acidic, and hydrophilic ScADH protein was predicted to have no signal peptide and be located in the chloroplast stroma. Its main secondary structure is random coils. It has the structure typical of ADH and contains NAD and zinc binding sites. Real-time quantitative PCR analysis revealed that ScADH was constitutively expressed at different levels in various sugarcane tissues. The highest expression levels were observed in roots, whereas the lowest levels were observed in leaves. ScADH was first upregulated and then inhibited after SA and MeJA treatment. The highest expression levels, which was 7.34 times and 11.81 times higher than the control, were observed at 6 h after SA and MeJA treatment, respectively. ScADH transcripts after were upregulated at 12 h after ABA treatment to a level 5.53 times higher than the control, representing the highest inducible expression. During smut pathogen infection, the expression of ScADH was inhibited in the susceptible cultivar ROC22, but was enhanced in the resistant germplasm YC05-179, although inhibition of ScADH expression was also found in the primarily stage of smut infection in YC05-179. Results of this study suggested that ScADH plays an important role in plant responses to biotic and abiotic stresses.

参考文献/References:

1 Riveros-Rosas H, Julian-Sanchez A, Villalobos-Molina R, Pardo JP, Pina E. Diversity, taxonomy and evolution of medium-chain dehydrogenase/reductase superfamily [J]. Eur J Biochem, 2003, 270 (16): 3309-3334
2 Yin SJ, Liao CS, Wu CW, Li TT, Chen LL, Lai CL, Tsao TY. Human stomach alcohol and aldehyde dehydrogenases: comparison of expression pattern and activities in alimentary tract [J]. Gastroenterology, 1997, 112 (3): 766-775
3 Kato-Noguchi H. Pyruvate metabolism in rice coleoptiles under anaerobiosis [J]. Plant Growth Regul, 2006, 50 (1): 41-46
4 吕艳艳, 付三雄, 陈松, 张维, 戚存扣. 甘蓝型油菜BnADH3基因的克隆及转BnADH3拟南芥的耐淹性[J]. 作物学报, 2015, 41 (4): 565-573 [Lü YY, Fu SX, Chen S, Zhang W, Qi CK. Cloning of BnADH3 gene from Brassica napus L. and submergence tolerance of BnADH3 transgenic Arabidopsis [J]. Acta Agron Sin, 2015, 41 (4): 565-573
5 张计育, 王刚, 黄胜男, 宣继萍, 贾晓东, 郭忠仁. 乙醇脱氢酶基因家族在植物抵抗非生物胁迫过程中的作用研究进展[J]. 中国农学通报, 2015, 31 (10): 246-250 [Zhang JY, Wang G, Huang SN, Xuan JP, Jia XD, Guo ZR. Functions of alcohol dehydrogenase family in abiotic stress responses in plants [J]. Chin Agric Sci Bull, 2015, 31 (10): 246-250
6 王文泉, 张福锁. 高等植物厌氧适应的生理及分子机制[J]. 植物生理学通讯, 2001, 37 (1): 63-70 [Wang WQ, Zhang FS. The physiological and molecular mechanism of adaptation to anaerobiosis in higher plants [J]. Plant Physiol Commun, 2001, 37 (1): 63-70
7 Fukuda T, Yokoyama J, Nakamura T, Song IJ, Ito T, Ochiai T, Kanno A, Kameya T, Maki M. Molecular phylogeny and evolution of alcohol dehydrogenase (Adh) genes in legumes [J]. BMC Plant Biol, 2005, 5: 6
8 Strommer J. The plant ADH gene family [J]. Plant J, 2011, 66 (1): 128-142
9 Komatsu S, Deschamps T, Hiraga S, Kato M, Chiba M, Hashiguchi A, Tougou M, Shimamura S, Yasue H. Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots [J]. Plant Mol Biol, 2011, 77 (3): 309-322
10 刘晓忠, 汪宗立, 高煜珠. 涝渍逆境下玉米根系乙醇脱氢酶活性与耐涝性的关系[J]. 江苏农业学报, 1991, 7 (4): 1-7 [Liu XZ, Wang ZL, Gao YZ. Relationships between alcohol dehydrogenase activity and flooding tolerance in corn roots under waterlogging stress [J]. Jiangsu J Agric Sci, 1991, 7 (4): 1-7
11 de Bruxelles GL, Peacock WJ, Dennis ES, Dolferus R. Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis [J]. Plant Physiol, 1996, 111 (2): 381-391
12 Jarillo JA, Capel J, Leyva A, Martinez-Zapater JM, Salinas J. Two related low-temperature-inducible genes of Arabidopsis encode proteins showing high homology to 14-3-3 proteins, a family of putative kinase regulators [J]. Plant Mol Biol, 1994, 25 (4): 693-704
13 Kottapalli KR, Satoh K, Rakwal R, Shibato J, Doi K, Nagata T, Kikuchi S. Combining in silico mapping and arraying: an approach to identifying common candidate genes for submergence tolerance and resistance to bacterial leaf blight in rice [J]. Mol Cells, 2007, 24 (3): 394-408
14 Jackson MB, Colmer TD. Response and adaptation by plants to flooding stress [J]. Ann Bot, 2005, 96 (4): 501-505
15 Johnson JR, Cobb BG, Drew MC. Hypoxic induction of anoxia tolerance in roots of Adh1 null Zea mays L. [J]. Plant Physiol, 1994, 105 (1): 61-67
16 Komatus S, Yamamoto R, Nanjo Y, Mikami Y, Yunokawa H, Sakata K. A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques [J]. J Proteome Res, 2009, 8 (10): 4766-4778
17 Komatsu S, Sugimoto T, Hoshino T, Nanjo Y, Furukawa K. Identification of flooding stress responsible cascades in root and hypocotyl of soybean using proteome analysis [J]. Amino Acids, 2010, 38 (3): 729-738
18 Nanjo Y, Skultety L, Ashrafi Y, Komatsu S. Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques [J]. J Proteome Res, 2010, 9 (8): 3989-4002
19 刘登望, 李林. 湿涝对幼苗期花生根系ADH活性与生长发育的影响及相互关系[J]. 花生学报, 2007, 36 (4): 12-17 [Liu DW, Li L. The response of alcohol dehydrogenase activity & development of peanut roots to waterlogging & their relationships [J]. J Peanut Sci, 2007, 36 (4): 12-17
20 Kato-Noguchi H, Yasuda Y. Effect of low temperature on ethanolic fermentation in rice seedlings [J]. J Plant Physiol, 2007, 164 (8): 1013-1018
21 Peters JS, Frenkel C. Relationship between alcohol dehydrogenase activity and low-temperature in two maize genotypes, Silverado F1 and Adh1-Adh2-doubly null [J]. Plant Physiol Biochem, 2004, 42 (10): 841-846
22 Senthil-Kumar M, Hema R, Suryachandra TR, Ramegowda HV, Gopalakrishna R, Rama N, Udayakumar M, Mysore KS. Functional characterization of three water deficit stress-induced genes in tobacco and Arabidopsis: an approach based on gene down regulation [J]. Plant Physiol Biochem, 2010, 48 (1): 35-44
23 Diab AA, Kantety RV, Ozturk NZ, Benscher D, Nachit MM, Sorrells ME. Drought-inducible genes and differentially expressed sequence tags associated with components of drought tolerance in durum wheat [J]. Sci Res Essays, 2008, 3 (1): 9-26
24 沙向红. 盐胁迫对玉米幼苗根系乙醇脱氢酶与乙醛脱氢酶表达的影响[J]. 贵州农业科学, 2015, 43 (3): 47-50 [Sha XH. Effect of salt stress on expression of ethanol dehydrogenase (ADH2) and acetaldehyde dehydrogenase (ALDH2) in roots of young corn seedlings [J]. Guizhou Agric Sci, 2015, 43 (3): 47-50
25 Kato-Noguchi H. Induction of alcohol dehydrogenase by plant hormones in alfalfa seedlings [J]. Plant Growth Regul, 2000, 30 (1): 1-3
26 王绍华. 香蕉乙醇脱氢酶基因的克隆及其表达分析[D]. 海口: 海南大学, 2010 [Wang SH. Isolation and expression analysis of alcohol dehydrogenase (ADH) gene from Banana (Musa spp.) [D]. Haikou: Hainan University, 2010
27 宇文彬, 刘菊华, 贾彩红, 徐碧玉, 金志强. 香蕉果实采后乙醇脱氢酶活性与乙烯代谢的关系[J]. 果树学报, 2009, 26 (3): 386-389 [Yu WB, Liu JH, Jia CH, Xu BY, Jin ZQ. Study on the relationship between activity of alcohol dehydrogenase and ethylene metabolism for postharvest banana fruit [J]. J Fruit Sci, 2009, 26 (3): 386-389
28 黄宁. 黑穗病菌胁迫下甘蔗SSH文库构建及差异表达基因的克隆与分析[D]. 福州: 福建农林大学, 2014 [Huang N. Construction of suppression subtractive hybridization libraries of sugarcane challenged by Sporisorium scitamineum and cloning / analysis of several differentially expressed genes [D]. Fuzhou: Fujian Agricultural and Forestry University, 2014
29 刘峰, 苏炜华, 黄珑, 肖新换, 黄宁, 凌辉, 苏亚春, 张华, 阙友雄. 甘蔗Na+/H+逆转运蛋白基因的克隆与表达分析[J]. 作物学报, 2016, 42 (4): 501-512 [Liu F, Su WH, Huang L, Xiao XH, Huang N, Ling H, Su YC, Zhang H, Que YX. Isolation and characterization of a Na+/H+ antiporter gene from sugarcane [J]. Acta Agron Sin, 2016, 42 (4): 501-512
30 阙友雄, 许莉萍, 徐景升, 张积森, 张木清, 陈如凯. 甘蔗基因表达定量PCR分析中内参基因的选择[J]. 热带作物学报, 2009 30 (3): 274-278 [Que YX, Xu LP, Xu JS, Zhang JS, Zhang MQ, Chen RK. Selection of control genes in real-time qPCR analysis of gene expression in sugarcane [J]. Chin J Trop Crops, 2009 30 (3): 274-278
31 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using Real-time quantitative PCR and the 2-??Ct method [J]. Methods, 2001, 25 (4): 402-408
32 赵森, 陈永华, 陈昊, 肖国樱. 荧光定量PCR检测淹涝胁迫下水稻Adh2基因的表达量变化[J]. 中国生态农业学报, 2008, 16 (2): 455-458 [Zhao S, Chen YH, Chen H, Xiao GY. Dynamic analysis of Adh2 gene of rice (Oryza sativa L.) under submergence stress using real–time quantitative PCR[J]. Chin J Eco-Agric, 2008, 16 (2): 455-458
33 黄烈健, 向道权, 戴景瑞. 玉米抗病相关侯选基因DNA片段克隆[J]. 中国农业科学, 2000, 33 (增刊): 141-146 [Huang LJ, Xiang DQ, Dai JR. Cloning of the DNA fragment related resistance gene in maize [J]. Sci Agric Sin, 2000, 33 (suppl.): 141-146
34 武雪, 黄晓丽, 王喆之. 葡萄乙醇脱氢酶基因Ⅲ的电子克隆及生物信息学分析[J]. 生物技术通报, 2009 (5): 71-75 [Wu X, Huang XL, Wang ZZ. Electronic cloning and characterizations of ADH Ⅲ gene from Vitis vinifera using bioinformatics tools[J]. Biotechnol Bull, 2009 (5): 71-75
35 Svensson S, Stromberg P, Hoog JO. A novel subtype of class II alcohol dehydrogenase in rodents. Unique Pro(47) and Ser(182) modulates hydride transfer in the mouse enzyme[J]. J Biol Chem, 1999, 274 (42): 29712-2919
36 Svensson S, Hoog JO, Schneider G, Sandalova T. Crystal structures of mouse class II alcohol dehydrogenase reveal determinants of substrate specificity and catalytic efficiency [J]. J Mol Biol, 2000, 302 (2): 441-453
37 石之光. 植物ADH基因家族的生物信息学分析及棉花Zn结合脱氢酶的克隆与原核表达[D]. 贵阳: 贵州大学, 2009 [Shi ZG. Bioinformatic analysis of plant ADH gene family and cloning of cotton zinc binding dehydrogenase and its protein in vitro expression and purification [D]. Guiyang: Guizhou University, 2009
38 Jin YZ, Zhang C, Liu W, Tang YF, Qi HY, Chen H, Cao SX. The alcohol dehydrogenase gene family in melon (Cucumis melo L.) bioinformatics analysis and expression patterns[J]. Front Plant Sci, 2016 7 (26): e101730
39 任菲, 张荣佳, 陈强, 白艳波, 黄菲, 李雪梅. ABA和SA对于提高植物抗旱及抗盐性的研究进展[J]. 生物技术通讯, 2012 (3): 17-21 [Ren F, Zhang RJ, Chen Q, Bai YB, Huang F, Li XM. Progress in ABA and SA improving plant drought resistance and salt resistance [J]. Lett Biotechnol, 2012 (3): 17-21
40 Anand A, Uppalapati SR, Ryu CM, Allen SN, Kang L, Tang Y, Mysore KS. Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens [J]. Plant Physiol, 2008, 146 (2): 703-715
41 Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J. A central role of salicylic acid in plant disease resistance [J]. Science, 1994, 266 (5188): 1247-1250
42 李长宁, Srivastava MK, 农倩, 李杨瑞. 水分胁迫下外源ABA提高甘蔗抗旱性的作用机制[J]. 作物学报, 2010, 36 (5): 863-870 [Li CN, Srivastava MK, Nong Q, Li YR. Mechanism of tolerance to drought in sugarcane plant enhanced by foliage dressing of abscisic acid under water stress [J]. Acta Agron Sin, 2010, 36 (5): 863-870

相似文献/References:

[1]罗俊,袁照年,张华,等.宿根甘蔗产量性状的稳定性分析[J].应用与环境生物学报,2009,15(04):488.[doi:10.3724/SP.J.1145.2009.00488]
 LUO Jun,YUAN Zhaonian,ZHANG Hua,et al.Stability Analysis on Yield Characters of Sugarcane Ratoon[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):488.[doi:10.3724/SP.J.1145.2009.00488]
[2]叶冰莹,邱思,周平,等.甘蔗蔗糖磷酸合成酶SPSⅡ cDNA片段克隆与表达分析[J].应用与环境生物学报,2011,17(05):673.[doi:10.3724/SP.J.1145.2011.00673]
 YE Bingying,QIU Si,ZHOU Ping,et al.Cloning and Expression Analysis of Sucrose-phosphate Synthase II Gene from Sugarcane[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):673.[doi:10.3724/SP.J.1145.2011.00673]
[3]黄祖新,黄镇,叶冰莹,等.宿根甘蔗根际土壤细菌多样性分析中培养法与非培养法比较研究[J].应用与环境生物学报,2011,17(05):742.[doi:10.3724/SP.J.1145.2011.00742]
 HUANG Zuxin,HUANG Zhen,YE Bingying,et al.Comparison of Culture-dependent and -independent Approaches for Diversity Analysis of Soil Bacteria in the Rhizosphere of Sugarcane[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):742.[doi:10.3724/SP.J.1145.2011.00742]
[4]罗俊,邓祖湖,阙友雄,等.国家甘蔗第七轮区域试验品种的丰产性及稳定性[J].应用与环境生物学报,2012,18(05):734.[doi:10.3724/SP.J.1145.2012.00734]
 LUO Jun,DENG Zuhu,QUE Youxiong,et al.Productivity and Stability of Sugarcane Varieties in the 7th Round National Regional Trial of China[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):734.[doi:10.3724/SP.J.1145.2012.00734]
[5]苏亚春,凌辉,王恒波,等.甘蔗SCoT-PCR反应体系优化与多态性引物筛选及应用[J].应用与环境生物学报,2012,18(05):810.[doi:10.3724/SP.J.1145.2012.00810]
 SU Yachun,LIN Hui,WANG Hengbo,et al.Optimization of SCoT-PCR Reaction System, and Screening and Utilization of Polymorphic Primers in Sugarcane[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):810.[doi:10.3724/SP.J.1145.2012.00810]
[6]肖新换,黄宁,张玉叶,等.甘蔗光合系统Ⅰ亚基O基因的克隆与表达分析[J].应用与环境生物学报,2015,21(02):208.[doi:10.3724/SP.J.1145.2014.09033]
 XIAO Xinhuan,HUANG Ning,ZHANG Yuye,et al.Cloning and expression of photosystem I subunit O gene from sugarcane[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):208.[doi:10.3724/SP.J.1145.2014.09033]
[7]肖新换,黄珑,黄宁,等.甘蔗ScBAK1基因及其可变剪接体的克隆与表达分析[J].应用与环境生物学报,2015,21(05):872.[doi:10.3724/SP.J.1145.2015.03005]
 XIAO Xinhuan,HUANG Long,HUANG Ning,et al.Cloning and expression analysis of ScBAK1 gene and its alternative spliceosome in sugarcane[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):872.[doi:10.3724/SP.J.1145.2015.03005]
[8]阙万才,黄宁,刘峰,等.甘蔗真核生物翻译起始因子5A基因的克隆与表达分析[J].应用与环境生物学报,2015,21(06):1120.[doi:10.3724/SP.J.1145.2015.04008]
 QUE Wancai,HUANG Ning,LIU Feng,et al.Isolation and expression of a eukaryotic translation initiation factor 5A gene from sugarcane[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):1120.[doi:10.3724/SP.J.1145.2015.04008]
[9]苏炜华# 黄 珑# 黄 宁 刘 峰 苏亚春 肖新换 凌 辉 阙友雄.甘蔗细胞色素P450还原酶基因的RT-PCR扩增与表达分析[J].应用与环境生物学报,2016,22(02):173.[doi:10.3724/SP.J.1145.2015.07029]
 SU Weihua#,HUANG Long#,HUANG Ning,et al.RT-PCR amplification and expression analysis of a cytochrome P450 reductasegene from sugarcane[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):173.[doi:10.3724/SP.J.1145.2015.07029]
[10]黄宁,李聪娜,汤翰臣,等.甘蔗泛素结合酶基因的克隆与表达[J].应用与环境生物学报,2018,24(04):845.[doi:10.19675/j.cnki.1006-687x.2017.11006]
 HUANG Ning,LI Congna,TANG Hanchen,et al.Cloning and expression analysis of a ubiquitin-conjugating enzyme gene in sugarcane[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):845.[doi:10.19675/j.cnki.1006-687x.2017.11006]

更新日期/Last Update: 2017-06-25