|本期目录/Table of Contents|

[1]何明雄,祝其丽,潘科,等.利用木质纤维素类生物质发酵生产乙醇重组菌株研究进展[J].应用与环境生物学报,2009,15(04):579-584.[doi:10.3724/SP.J.1145.2009.00579]
 HE Mingxiong,ZHU Qili,PAN Ke,et al.Progress in Ethanol Production with Lignocellulosic Biomass by Different Recombinant Strains[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):579-584.[doi:10.3724/SP.J.1145.2009.00579]
点击复制

利用木质纤维素类生物质发酵生产乙醇重组菌株研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
15卷
期数:
2009年04期
页码:
579-584
栏目:
生物质能源专辑
出版日期:
2009-08-25

文章信息/Info

Title:
Progress in Ethanol Production with Lignocellulosic Biomass by Different Recombinant Strains
作者:
何明雄 祝其丽 潘科 胡启春
1农业部沼气科学研究所生物质能技术研究中心 成都 610041
2农业部能源微生物与利用重点开放实验室 成都 610041
Author(s):
HE Mingxiong ZHU Qili PAN Ke HU Qichun
1Research Centre of Biomass Energy Technology, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
2Key Laboratory of Energy Microbiology and Application, Ministry of Agriculture, Chengdu 610041, China
关键词:
木质纤维素 生物质 燃料乙醇 酿酒酵母 运动发酵单胞菌 大肠杆菌 克雷白氏杆菌
Keywords:
lignocellulose biomass bioethanol Saccharomyces cerevisiae Zymomonas mobilis Escherichia coli Klebsiella oxytoca
分类号:
Q936 : TK6
DOI:
10.3724/SP.J.1145.2009.00579
文献标志码:
A
摘要:
要实现木质纤维素类生物质的有效利用,当前还面临很多瓶颈问题亟待解决,而缺乏能够同时高效利用纤维素类水解物的发酵菌株是制约纤维素乙醇生产的最关键因素. 目前对发酵菌种的研究主要集中在酿酒酵母、运动发酵单胞菌、大肠杆菌和克雷白氏杆菌这4种菌上,已取得大量研究进展,为纤维素乙醇的产业化奠定了一定的基础. 本文综述了这4种菌发酵纤维素水解物的基因工程改造研究进展,并对组学时代进一步优化发酵菌株进行了展望. 图2 表2 参51
Abstract:
Ethanol fermentation with lignocellulosic biomass involves significantly great challenges, owing to lack of industrially suitable microorganisms for converting cellulose hydrolysates into fuel ethanol, which has traditionally been considered as a major technical roadblock to the development of bioethanol industry. Currently, different recombinant strains have been engineered to produce ethanol from lignocellulosic biomass. The greatest successes have been made in the engineering of Saccharomyces cerevisiae and some other bacteria, including Escherichia coli, Klebsiella oxytoca, and Zymomonas mobilis, which provide a basis for constructing industrially suitable engineered strains for cellulose ethanol industrialization. This review summarizes recent progress in this filed, and also prospect it in the Omic era. Fig 2, Tab 2, Ref 51

参考文献/References:

1 Chen HZ (陈洪章) ed in chief. 秸秆资源生态高质化理论与应用. 北京: 化学工业出版社, 2006
2 Li K (李科), Jin YL (靳艳玲), Gan MZ (甘明哲), Liu XF (刘晓风), Zhao H (赵海). Progress in research of key techniques for ethanol production from lignocellulose. Chin J Appl Environ Biol (应用与环境生物学报), 2008, 14 (6): 877~884
3 Sun XY (孙宪昀), Qu YB (曲音波), Liu ZY (刘自勇). Progress in research of lignocellulose degrading enzymes from Penicillium. Chin J Appl Environ Biol (应用与环境生物学报), 2007, 13 (5): 736~740
4 Jeffries TW. Utilization of xylose by bacteria, yeasts, and fungi. Adv Biochem Eng Biotechnol, 1983, 27: 1~32
5 Kötter P, Amore R, Hollenberg CP, Ciriacy M. Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet, 1990, 18: 493~500
6 Ho NW, Chen Z, Brainard AP. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol, 1998, 64: 1852~1859
7 Eliasson A, Christensson C, Wahlbom CF, Hahn-Hagerdal B. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol, 2000, 66: 3381~3386
8 Jeppsson M, Johansson B, Hahn-Hagerdal B, Gorwa-Grauslund MF. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol, 2002, 68: 1604~1609
9 Verho R, Londesborough J, Penttilä M, Richard P. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol, 2003, 69: 5892~5897
10 Träff KL, Otero Cordero RR, van Zyl WH, Hahn-Hägerdal B. Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol, 2001, 67: 5668~5674
11 Yuan ZH (袁振宏), Pan YP (潘亚平), Liu JK (刘继开), Yan YJ (颜涌捷), Yang XS (杨秀山). Construction of recombinant yeast converting xylose and glucose to ethanol. Microbiology (微生物学通报), 2006, 33 (3): 104~108
12 Walfridsson M, Hallborn J, Penttila M, Keranen S, Hahn-Hagerdal B. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol, 1995, 61: 4184~4190
13 Karhumaa K, Sanchez RG, Hahn-Hägerdal B, Gorwa-Grauslund M-F. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microbial Cell Factories, 2007, 66: 5 doi:10.1186/1475-2859-6-5
14 Shen Y (沈煜), Zheng HJ (郑华军), Wang Y (王颖), Bao XM (鲍晓明), Qu YB (曲音波), Bai FW (白凤武). Effect of xylulokinase expression-level in the xylose-utilizing recombinant Sacchaomyces cerevisiae on the metabolic pathway of xylose. Progr Biochem & Biophys (生物化学与生物物理进展), 2004, 31: 746~751
15 Kuyper MHH, Stave AK, Winkler AA, Jetten MS, de Laat, WT dRJ, Op den Camp HJ, van Dijken JP, Pronk JT. High level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res, 2003, 4: 69~78
16 Kuyper MWA, Van Dijken JP, Pronk JT. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res, 2004, 4: 655~664
17 Kuyper M HM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res, 2005, 5: 399~409
18 Fujita Y, Takahashi S, Ueda M. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes to ferment cellulose to ethanol. Appl Environ Microbiol, 2002, 68: 5136~5141
19 Shigechi H, Koh J, Fujita Y. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase. Appl Environ Microbiol, 2004, 70: 5037~5040
20 Hou J (侯进), Shen Y (沈煜), Bao XM (鲍晓明). Expression xylose isomerase on Saccharomyces cerevisiae cell surface and its influence on xylose metabolism. Chin J Bioproc Engin (生物过程加工), 2006, 4: 30~34
21 Panesar PS, Marwaha SS, Kennedy JF. Zymomonas mobilis: An alternative ethanol producer. J Chem Technol Biotechnol, 2006, 81: 623~635
22 Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ, Hong JH, Kim H, Kim JH, Kil JI, Park CJ, Oh HM, Lee JS, Jin SJ, Um HW, Lee HJ, Oh SJ, Kim JY, Kang HL, Lee SY, Lee KJ, Kang HS. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol, 2005, 23: 63~68
23 Reisch MS. Fuels of the future. Chem Eng News, 2006, 84: 30~32
24 Liu C, Goodman A, Dunn N. Expression of cloned Xanthomonas D-xylase catabolic genes in Zymomonas mobilis. J Biotechnol, 1988, 7: 61~70
25 Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science, 1995, 267: 240~243
26 Deanda K, Zhang M, Eddy C, Picataggio S. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol, 1996, 62: 4465~4470
27 Zhang M, Eddy C, Deanda K, Finkestein M, Picataggio S. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science, 1995a, 267: 240~243
28 Joachimsthal EL, Rogers PL. Characterization of a highproductivity recombinant strain of Zymomonas mobilis for ethanol production from glucose/xylose mixtures. Appl Biochem Biotechnol, 2000, 84: 343~356
29 Mohagheghi A EK, Chou YC, Zhang M. Cofermentation of glucose, xylose, and arabinose by genomic DNAintegrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol, 2002, 98: 885~898
30 Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF. Genetic engineering of ethanol production in Escherichia coli. Appl Environ. Microbiol, 1987, 53: 2420~2425
31 Alterthum F, Ingram LO. Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl Environ Microbiol, 1989, 55: 1943~1948
32 Beall DS, Ohta K, Ingram LO. Parametric studies of ethanol production from xylose and other sugars by recombinant Escherichia coli. Biotechnol Bioeng, 1991, 38: 296~303
33 Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO. Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol, 1991, 57: 893~900
34 Tao H, Gonzalez R, Martinez A, Rodriguez M, Ingram L, Preston JF, Shanmugam KT. Engineering a homo-ethanol pathway in Escherichia coli: Increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation. J Bacteriol, 2001, 183: 2879~2988
35 Dien BS, Hespell RB, Wyckoff HA, Bothast RJ. Fermentation of hexose and pentose sugars using a novel ethanologenic Escherichia coli strain. Enzyme Microb Technol, 1998, 23: 366~371
36 Dien BS, Nichols NN, OBryan PJ, Bothast RJ: Development of new ethanologenic Escherichia coli strains for fermentation of .lignocellulosic biomass. Appl Biochem Biotechnol, 2000, 84: 181~196
37 Yomano LP, York SW, Ingram LO. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol, 1998, 20: 132~138
38 Zaldivar J, Ingram LO. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng, 1999, 66: 203~210
39 Zaldivar J, Martinez A, Ingram LO. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng, 1999, 65 (1): 24~33
40 Zaldivar J, Martinez A, Ingram LO. Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng, 2000, 68: 524~530
41 Ohta KBD, Mejia JP, Shanmugam KT, Ingram LO. Metabolic engineering of Klebsiella oxytoca M5A1 for ethanolproduction from xylose and glucose. Appl Environ Microbiol, 1991b, 57: 2810~2815
42 Wood BE, Ingram LO. Ethanol-production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol-production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl Environ Microbiol, 1992, 58: 2103~2110
43 Zhou SD, Davis FC, Ingram LO. Gene integration and expression and extracellular secretion of Erwinia chrysanthemi endoglucanase CelY (celY) and CelZ (celZ) in ethanologenic Klebsiella oxytoca P2. Appl Environ Microbiol, 2001, 67: 6~14
44 Yomano LPYS, Ingram LO. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol, 1998, 20: 132~138
45 Lawford HG, Rousseau JD. The effect of glucose on hih-level xylose fermentations by recombinant Zymomonas in batch and fed-batch fermentations. Appl Biochem Biotechnol, 1999, 77~79: 235~249
46 Sedlak M, Ho NWY. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast, 2004, 21: 671~684
47 Salusjärvi L, Kankainen M, Soliymani R, Pitkänen J-P, Penttilä M, Ruohonen L. Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microbial Cell Factories, 2008, 7: 18. doi:10.1186/1475-2859-1187-1118
48 Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol, 2007, 25: 319~326
49 Jeffries TW. Engineering yeasts for xylose metabolism. Curr Opin Biotechnol, 2006, 17: 320~326
50 Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science, 2006, 314: 1565~1568
51 Alper H, Stephanopoulos G. Global transcription machinery engineering: A new approach for improving cellular phenotype. Metabolic Engin, 2007, 9: 258~267

相似文献/References:

[1]李科,靳艳玲,甘明哲,等.木质纤维素生产燃料乙醇的关键技术研究现状[J].应用与环境生物学报,2008,14(06):877.[doi:10.3724/SP.J.1145.2008.00877]
 LI Ke,JIN Yanling,et al.Progress in Research of Key Techniques for Ethanol Production from Lignocellulose[J].Chinese Journal of Applied & Environmental Biology,2008,14(04):877.[doi:10.3724/SP.J.1145.2008.00877]
[2]邓辉,王成,吕豪豪,等.堆肥过程放线菌演替及其木质纤维素降解研究进展[J].应用与环境生物学报,2013,19(04):581.[doi:10.3724/SP.J.1145.2013.00581]
 DENG Hui,WANG Cheng,LÜ,et al.Research Progress in Succession of Actinomycetal Communities and Their Capacity of Degrading Lignocellulose During Composting Process[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):581.[doi:10.3724/SP.J.1145.2013.00581]
[3]涂毅,高秋强,鲍杰.外源功能基因在木质纤维素依赖型乳酸菌Pediococcus acidilactici DQ2中的表达[J].应用与环境生物学报,2013,19(05):811.[doi:10.3724/SP.J.1145.2013.00811]
 TU Yi,GAO Qiuqiang,BAO Jie.Expression of Functional Genes in Lignocellulose-dependent Lactic Acid Bacterium Pediococcus acidilactici DQ2[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):811.[doi:10.3724/SP.J.1145.2013.00811]
[4]秦改娟,王晓,陈青君,等.不同配方培养料生产双孢蘑菇过程中主要木质纤维素降解酶及物料组分的变化[J].应用与环境生物学报,2017,23(06):1035.[doi:10.3724/SP.J.1145.2017.01019]
 QIN Gaijuan,WANG Xiao,CHEN Qingjun**& ZHANG Guoqing.Changes of lignocellulolytic enzymes and material components in different compost formulas during the production of Agaricus bisporus[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):1035.[doi:10.3724/SP.J.1145.2017.01019]
[5]游洋,吴波,胡国全,等.牛粪生物质资源综合利用研究进展[J].应用与环境生物学报,2018,24(02):401.[doi: 10.19675/j.cnki.1006-687x.2017.05007]
 YOU Yang,WU Bo,HU Guoquan,et al.Research progress of the comprehensive utilization of cow dung biomass resources[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):401.[doi: 10.19675/j.cnki.1006-687x.2017.05007]
[6]高晓静 张昊琳 桑羽希 蔡盼盼 张国庆 陈青君**.利用杂草培养料栽培双孢蘑菇的可行性分析[J].应用与环境生物学报,2018,24(06):1.[doi:10.19675/j.cnki.1006-687x.2018.01033]
 GAO Xiaojing,ZHANG Haolin,SANG Yuxi,et al.Utilization of Reservoir Weeds for mushroom (Agaricus bisporus) production[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):1.[doi:10.19675/j.cnki.1006-687x.2018.01033]
[7]王成盼 梁世优 殷学杰 于保庭 胡 寅 莫建初**.蚁巢伞对木质纤维素的降解作用*[J].应用与环境生物学报,2019,25(02):1.[doi:10.19675/j.cnki.1006-687x.2018.07013]
 WANG Chengpan,LIANG Shiyou,YIN Xuejie,et al.Degradation of lignocellulose by Termitomyces*[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):1.[doi:10.19675/j.cnki.1006-687x.2018.07013]

备注/Memo

备注/Memo:
中国农业科学院科技经费项目(2009)资助
更新日期/Last Update: 2009-08-27