|本期目录/Table of Contents|

[1]颜克亮,吴航军,王宏勋,等.白腐菌Trametes hirsute对六氯苯的降解及其条件优化[J].应用与环境生物学报,2009,15(05):698-702.[doi:10.3724/SP.J.1145.2009.00698]
 YAN Keliang,WU Hangjun,WANG Hongxun,et al.Biodegradation of Hexachlorobenzene by Trametes hirsute and Optimization of Its Culture Conditions[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):698-702.[doi:10.3724/SP.J.1145.2009.00698]
点击复制

白腐菌Trametes hirsute对六氯苯的降解及其条件优化()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
15卷
期数:
2009年05期
页码:
698-702
栏目:
研究论文
出版日期:
2009-10-25

文章信息/Info

Title:
Biodegradation of Hexachlorobenzene by Trametes hirsute and Optimization of Its Culture Conditions
作者:
颜克亮吴航军王宏勋林莉张晓昱
(1华中科技大学生命科学与技术学院 武汉 430074)
(2武汉工业学院食品科学与工程学院 武汉 430023)
(3华中科技大学环境工程学院 武汉 430074)
Author(s):
YAN Keliang WU Hangjun WANG Hongxun LIN Li & ZHANG Xiaoyu
(1College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)
(2College of Food Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China)
(3Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, China)
关键词:
白腐菌响应面法六氯苯生物降解
Keywords:
white rot fungus response surface methodology hexachlorobenzene biodegradation
分类号:
X172
DOI:
10.3724/SP.J.1145.2009.00698
文献标志码:
A
摘要:
在液体体系下,筛选了5株白腐菌,对六氯苯进行了降解研究,并优化了白腐菌Trametes hirsute TH对六氯苯的降解条件. 结果表明,不同白腐菌均能降解六氯苯,其中白腐菌Trametes sp. TR对六氯苯降解率最高,达90.21%;而白腐菌T. hirsute TH对六氯苯降解率为87.08 %,但生物量最高,达3.33 g/L. 通过响应面法优化白腐菌T. hirsute TH降解六氯苯的条件,结果显示,转速、接种量和培养时间是影响六氯苯降解的主要因素. 优化后的最佳条件为:转速125 r/min,菌丝接种量8%(V/V),培养时间2 d,温度28 ℃,pH为7. 在优化条件下,2 d内白腐菌T. hirsute TH对浓度为10 mg/L的六氯苯降解率和降解量分别可达91.52%和2.288 mg L-1 d-1. 图2 表7 参17
Abstract:
Degradation characteristics of HCB by five strains of white rot fungi and optimization of degradation conditions of HCB by T. Hirsute TH in liquid culture system were investigated. The results showed that the five strains could degrade HCB effectively, the degradation rate of HCB by Trametes sp. strain TR, which could reach 90.21%, was the highest and the biomass of T. hirsute was as high as 3.33 g/L although the degradation rate was 87.08 %. Aiming to obtain the optimum degradation conditions, response surface methodology (RSM) was used to optimize the degradation conditions of HCB by T. hirsute TH. Three factors, rotational speed, inoculum volume and culture time, mainly affected HCB biodegradation by the fungus. The maximum degradation rate of HCB by T. hirsute TH could be achieved under rotational speed of 125 r/min, inoculum volume of 8% (V/V), culture time of 2 days, temperature of 28 ℃ and pH of 7. Under these optimum conditions, the degradation rate and amount of HCB with 10 mg/L by T. hirsute TH were 91.52% and 2.288 mg L-1 d-1, respectively. Fig 2, Tab 7, Ref 17

参考文献/References:

1 Zhao X (赵曦), Huang Y (黄艺), Ao XL (敖晓兰). Biodegrdation of persistent organic pollutants (POPs) and potential capability of ectomycorrhizal fungi. Chin J Appl Environ Biol (应用与环境生物学报), 2007, 13 (1): 140~144
2 Gao XB, Wang W, Liu X. Low-temperature dechlorination of hexachlorobenzene on solid supports and the pathway hypothesis. Chemosphere, 2008, 71 (6): 1093~1099
3 Bailey RE. Global hexachlorobenzene emissions. Chemosphere, 2001, 43 (2): 167~182
4 Nakano T, Fukushima M, Shibata Y, Suzuki N, Takazawa Y, Yoshida Y, Nakajima N, Enomoto Y, Tanabe S, Morita M. POPs monitoring in Japan-Fate and behavior of POPs. Organohalogen Compounds, 2004, 66 (1): 1490~1495
5 Wania F, Mackay D. Tracking the distribution of persistent organic pollutants. Environ Scie & Technol, 1996, 30: 390~396
6 Matheus DR, Bononi VLR., Machado KMG. Biodegradation of hexachlorobenzene by basidiomycetes in soil contaminated with industrial residues. World J Microbiol & Biotechnol, 2000, 16 (5): 415~421
7 Miyoshi K, Nishio T, Yasuhara A, Mortita M, Shibamoto T. Detoxification of hexachlorobenzene by dechlorination with potassium-sodium alloy. Chemosphere, 2004, 55 (11): 1439~1446
8 Hirano T, Ishida T, Oh K, Sudo R. Biodegradation of chlordane and hexachlorobenzenes in river sediment. Chemosphere, 2007, 67 (3): 428~434
9 Bumpus JA, Tien M, Wright D, Aust SD. Oxidation of persistent environmental pollutants by a white rot fungus. Science, 1985, 228 (4706): 1434~1436
10 Ou HY (欧宏宇), Jia SR (贾士儒). The application of SAS system in optimization of microbial culture conditions. J Tianjin Univ Light Ind (天津轻工业学院学报), 2001, 1 (36): 14~17
11 Montgomery DC. Design and Analysis of Experiments. 3nd ed. New York, USA: John Wiley & Sons, 1991
12 Ping RJ (平芮巾), Sun M (孙谧), Liu JZ (刘均忠), Wang YJ (王跃军), Hao JH (郝建华), Zhang SJ (张胜军). Optimization of fermentation conditions for marine Bacillus licheniformis MP-2 esterase by response surface methodology. Chin J Appl Environ Biol (应用与环境生物学报), 2008, 14 (4 ): 548~552
13 Hakalaa TK,Lundella T,Galkina S, Majjala P, Kalkkinen N, Hatakka A. Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzyme & Microbial Technol, 2006, 39 (7): 1476~1483
14 Steffen KT, Hofrichter M, Hatakka A. Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol & Biotechnol, 2000, 54 (6): 819~825
15 Daljit SA, Mukesh C, Paramjit KG. Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Intern Biodeter & Biodegr, 2002, 50 (2): 115~120
16 Gan P (甘平), Fan YB (樊耀波), Wang MJ (王敏健). Experiment of biodegradation of chlorobenzenes. Environ Sci (环境科学), 2001, 22 (3): 93~96
17 Liu T (刘婷), Chen ZL (陈朱蕾), Cao L (曹丽), Sun W (孙蔚),Shen YF (沈韫芬). 16S rDNA-RFLP analysis of structure and diversity of an aerobic microbial community degrading hexachlorobenzene. Acta Microbiol Sin (微生物学报), 2006, 46 (5): 758~762

相似文献/References:

[1]颜克亮,任大军,王宏勋,等.不同基质体系中白腐菌对喹啉和吲哚的降解[J].应用与环境生物学报,2008,14(06):809.[doi:10.3724/SP.J.1145.2008.00809]
 YAN Keliang,REN Dajun,WANG Hongxun & ZHANG Xiaoyu**.Biodegradation of Quinoline and Indole by Pleurotus ostreatus in Different Substrate Systems[J].Chinese Journal of Applied & Environmental Biology,2008,14(05):809.[doi:10.3724/SP.J.1145.2008.00809]
[2]姚梦吟,刘晓风,袁月祥,等.一株选择性降解木质素菌的筛选及其对玉米秸秆的降解[J].应用与环境生物学报,2009,15(03):427.[doi:10.3724/SP.J.1145.2009.00427]
 YAO Mengyin,LIU Xiaofeng,YUAN Yuexiang,et al.Isolation of A Fungus with Selective Delignification and Its Degradation of Corn Stalk[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):427.[doi:10.3724/SP.J.1145.2009.00427]
[3]李铭,杨亚力,杨顺楷.响应面法优化固定粘红酵母细胞条件及生物转化制L-苯丙氨酸[J].应用与环境生物学报,2010,16(02):279.[doi:10.3724/SP.J.1145.2010.00279]
 LI Ming,YANG Yali,YANG Shunkai.Optimal Conditions for Bio-production of L-phenylalanine by Immobilized Cells of Rhodotolula glutinis[J].Chinese Journal of Applied & Environmental Biology,2010,16(05):279.[doi:10.3724/SP.J.1145.2010.00279]
[4]谢天文,袁月祥,闫志英,等.一株嗜酸性产纤维素酶真菌的特性及产酶条件优化[J].应用与环境生物学报,2010,16(06):863.[doi:10.3724/SP.J.1145.2010.00863]
 XIE Tianwen,YUAN Yuexiang,YAN Zhiying,et al.Characteristics of an Acidophilic Cellulase-producing Fungus and Optimization of Its Fermentation Condition[J].Chinese Journal of Applied & Environmental Biology,2010,16(05):863.[doi:10.3724/SP.J.1145.2010.00863]
[5]刘乐乐,鲍蓬,廖蓓,等.响应面法优化锰氧化细菌发酵培养基[J].应用与环境生物学报,2011,17(01):130.[doi:10.3724/SP.J.1145.2011.00130]
 LIU Lele,BAO Peng,LIAO Bei,et al.Optimization of Fermentation Medium for A Manganese-oxidizing Bacterium Bacillus sp. WH4 by Response Surface Method[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):130.[doi:10.3724/SP.J.1145.2011.00130]
[6]祝玉洪,刘龙,周景文,等.不透明红球菌转化合成α-酮异己酸的培养条件优化[J].应用与环境生物学报,2011,17(04):553.[doi:10.3724/SP.J.1145.2011.00553]
 ZHU Yuhong,LIU Long,ZHOU Jingwen,et al.Optimization of Transformation and Synthesis Conditions of α-ketoisocaproate by Rhodococcus opacus DSM 43250[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):553.[doi:10.3724/SP.J.1145.2011.00553]
[7]包兴艳,郝建华,陈世建,等.产酯酶B1海洋枯草芽孢杆菌C5发酵条件优化[J].应用与环境生物学报,2012,18(06):999.[doi:10.3724/SP.J.1145.2012.00999]
 BAO Xingyan,HAO Jianhua,CHEN Shijian,et al.Optimization of Fermentation Conditions for Marine Bacillus subtilis C5 Producing Esterase B1[J].Chinese Journal of Applied & Environmental Biology,2012,18(05):999.[doi:10.3724/SP.J.1145.2012.00999]
[8]龙飞,靳艳玲,赵云,等.丙酮丁醇梭菌Clostridium acetobutylicum CICC 8012发酵鲜芭蕉芋生产丁醇[J].应用与环境生物学报,2013,19(01):54.[doi:10.3724/SP.J.1145.2013.00054]
 LONG Fei,JIN Yanling,ZHAO Yun,et al.Optimization of Butanol Production from Canna edulis Ker by Clostridium acetobutylicum Using Response Surface Methodology[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):54.[doi:10.3724/SP.J.1145.2013.00054]
[9]肖鹏飞,秦必达,李玉文.非离子表面活性剂强化白腐菌及其粗酶液对有机氯农药的降解[J].应用与环境生物学报,2015,21(01):22.[doi:10.3724/SP.J.1145.2014.04048]
 XIAO Pengfei,QIN Bida,LI Yuwen.Effects of nonionic surfactants on degradation of organochlorine pesticides by white rot fungus and its enzyme[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):22.[doi:10.3724/SP.J.1145.2014.04048]
[10]费雯,淳泽,何沁嶷,等.金钗石斛总多酚提取工艺及体外抗氧化活性[J].应用与环境生物学报,2015,21(04):623.[doi:10.3724/SP.J.1145.2015.01047]
 FEI Wen,CHUN Ze,HE Qinyi,et al.Extraction conditions and in vitro antioxidant activities of polyphenols from Dendrobium nobile[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):623.[doi:10.3724/SP.J.1145.2015.01047]

备注/Memo

备注/Memo:
国家高技术研究发展计划(“863”计划)项目资助(No. 2007AA021301) Supported by the National High-tech Research and Development Program of China (“863” Program, No. 2007AA021301)
更新日期/Last Update: 2009-10-26