|本期目录/Table of Contents|

[1]李科,靳艳玲,甘明哲,等.木质纤维素生产燃料乙醇的关键技术研究现状[J].应用与环境生物学报,2008,14(06):877-884.[doi:10.3724/SP.J.1145.2008.00877]
 LI Ke,JIN Yanling,et al.Progress in Research of Key Techniques for Ethanol Production from Lignocellulose[J].Chinese Journal of Applied & Environmental Biology,2008,14(06):877-884.[doi:10.3724/SP.J.1145.2008.00877]
点击复制

木质纤维素生产燃料乙醇的关键技术研究现状()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
14卷
期数:
2008年06期
页码:
877-884
栏目:
综述
出版日期:
2008-12-25

文章信息/Info

Title:
Progress in Research of Key Techniques for Ethanol Production from Lignocellulose
文章编号:
5008
作者:
李科靳艳玲甘明哲刘晓风赵海
(1中国科学院成都生物研究所 成都 610041)
(2中国科学院研究生院 北京 100049)
Author(s):
LI Ke1 2 JIN Yanling12 GAN Mingzhe1 2 LIU Xiaofeng1 & ZHAO Hai1**
(1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China)
(2Graduate University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
木质纤维素燃料乙醇预处理离子液酶解发酵戊糖
Keywords:
lignocellulose bioethanol pretreatment ionic liquids enzymatic hydrolysis fermentation pentose
分类号:
TK6
DOI:
10.3724/SP.J.1145.2008.00877
文献标志码:
A
摘要:
木质纤维素是自然界广泛存在且廉价的可再生资源,其主要成分纤维素、半纤维素是潜在的燃料乙醇生产原料. 虽然由木质纤维素生产燃料乙醇的技术路线已具可行性,但存在着具体工艺环节复杂、生产能耗高等局限,严重阻碍了其规模化生产. 目前纤维素燃料乙醇生产主要围绕预处理、酶解、发酵三大关键步骤进行技术攻关,其中预处理的能耗和效率、发酵过程的五碳糖利用等问题成为该工艺的重要制约因素. 本文在综述国内外纤维素乙醇生产关键步骤的基础上,着重分析了各种物理、化学和生物预处理的优缺点以及新兴的预处理思路,归纳了各类纤维素乙醇生产菌的特点,包括耐高温和五碳糖的利用,并介绍了当前主要的发酵方式和优化措施,以期为木质纤维素生产乙醇提供新的研究思路. 表5 参86
Abstract:
Lignocellulose, with cellulose and hemicellulose as its main components, extensively occurs in the world and is a kind of cheap renewable resource for ethanol production. Although the technical route of bioethanol production from lignocellulose is feasible, the industrial application is limited by its practical obstacles. At present, the studies on ethanol production from lignocellulose mainly focus on three critical steps: pretreatment, enzymatic hydrolysis and fermentation. Particularly, the energy cost and the efficiency of the pretreatment, along with the usage of pentose in fermentation become the crucial limitations of this process. Based on reviewing key techniques for bioethanol production from lignocellulose, advantages and disadvantages of various physical, chemical and biological pretreatments, along with the latest methods, were analyzed. Moreover, the characteristics of many kinds of microbes, such as their thermotolerance and ability of pentose’s usage, and the widely-used fermentation modes are also summarized in this review to provide some new ideas for ethanol production from lignocellulose. Tab 5, Ref 86

参考文献/References:

1 Saha BC, Cotta MA. Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Progr, 2006, 22 (2): 449~453
2 Varga E, Klinke HB, Reczey K, Thomsen AB. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol & Bioengin, 2004, 88 (5): 567~574
3 Gáspár M, Juhász T, Szengyel Z, Réczey K. Fractionation and utilisation of corn fibre carbohydrates. Proc Biochem, 2005, 40 (3~4): 1183~1188
4 Saha BC, Cotta MA. Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzyme & Microbial Technol, 2007, 41 (4): 528~532
5 Martin C, Gonzalez Y, Fernandez T, Thomsen AB. Investigation of cellulose convertibility and ethanol fermentation of sugarcane bagasse pretreated by wet oxidation and steam explosion. J Chem Technol Biotechnol, 2006, 81 (10): 1669~1667
6 Xu Z, Wang QH, Jiang ZH, Yang XX, Ji YZ. Enzymatic hydrolysis of pretreated soybean straw. Biomass & Bioenergy, 2007, 31 (2~3): 162~167
7 章克昌. 酒精与蒸馏酒工艺学. 北京: 中国轻工业出版社, 1995. 22
8 Zhang YHP, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol & Bioengin, 2007, 97 (2): 214~223
9 Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY. Coordinated development of leading biomass pretreatment technologies. Bioresour Technol, 2005, 96: 1959~1966
10 Yong Q (勇强), Xu Y (徐勇), Song XY (宋向阳), Yu SY (余世袁). The pilot system of bioethanol production from corn stalks. J Cellulose Sci Technol (纤维素科学与技术), 2006, 14 (3): 37~70
11 Cara C, Moya M, Ballesteros I, Negro MJ, Gonzalez A, Ruiz E. Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Proc Biochem, 2007, 42 (6): 1003~1009
12 Zhu SD, Wu YX, Yu ZN, Zhang X, Li H, Gao M. The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresour Technol, 2006, 97 (15): 1964~1968
13 Zhu SD, Wu YX, Yu ZN, Zhang X, Wang CW, Yu FQ, Jin SW. Production of ethanol from microwave-assisted alkali pretreated wheat straw. Proc Biochem, 2006, 41 (4): 869~873
14 Liu CG, Wyman CE. The effect of flow Rate of compressed hot water on xylan, lignin, and total mass removal from corn stover. Ind Eng Chem Res, 2003, 42 (21): 5409~5416
15 Liu CG, Wyman CE. Partial flow of compressed~hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol, 2005, 96 (18): 1978~1985
16 Yang B, Wyman CE. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol & Bioengin, 2004, 86 (1): 89~95
17 Tucker MP, Kim KH, Newman MM, Nguyen QA. Effects of temperature and moisture on dilute-acid steam explosion pretreatment of corn stover and cellulase enzyme digestibility. Appl Biochem Biotechnol, 2003, 105: 165~178
18 Schell DJ, Farmer J, Newman M, McMillan JD. Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor-investigation of yields, kinetics, and enzymatic digestibilities of solids. Appl Biochem Biotechnol, 2003, 105: 69~85
19 Zhu YM, Lee YY, Elander RT. Dilute-acid pretreatment of corn stover using a high-solids percolation reactor. Appl Biochem Biotechnol, 2004, 117 (2): 103~114
20 Zhu YM, Lee YY, Elander RT. Optimization of dilute-acid pretreatment of corn stover using a high-solids percolation reactor. Appl Biochem Biotechnol, 2005, 121: 1045~1054
21 Lloyd TA, Wyman CE. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol , 2005, 96 (18): 1967~1977
22 Lu XB, Zhang YM, Yang J, Liang Y. Enzymatic hydrolysis of corn stover after pretreatment with dilute sulfuric acid. Chem Engin & Technol, 2007, 30 (7): 938~944
23 Palmarola-Adrados B, Choteborska P, Galbe M, Zacchi G. Ethanol production from non-starch carbohydrates of wheat bran. Bioresour Technol, 2005, 96 (7): 843~850
24 Varga E, Reczey K, Zacchi G. Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility. Appl Biochem Biotechnol, 2004, 113: 509~523
25 Torget R, Hatzis C, Hayward TK, Hsu TA, Philippidis GP. Optimization of reverse-flow, two-temperature, dilute-acid pretreatment to enhance biomass conversion to ethanol. Appl Biochem Biotechnol, 1996, 57 (8): 85~101
26 Soderstrom J, Pilcher L, Galbe M, Zacchi G. Two~step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass & Bioenergy, 2003, 24 (6): 475~486
27 Soderstrom J, Galbe M, Zacchi G. Effect of washing on yield in one-and two-step steam pretreatment of soft wood for production of ethanol. Biotechnol Progr, 2004, 20 (3): 744~749
28 Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou SD. Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog, 1999, 15 (5): 855~866
29 Yoon HH. Pretreatment of lignocellulosic biomass by autohydrolysis and aqueous ammonia percolation. Korean J Chem Eng, 1998, 15 (6): 631~636
30 Cao NJ, Krishnan MS, Du JX, Gong CS, Ho NWY, Chen ZD, Tsao GT. Ethanol production from corn cob pretreated by the ammonia steeping process using genetically engineered yeast. Biotechnol Lett, 1996, 18 (9): 1013~1018
31 Mosier N, Wyman CE, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol, 2005, 96 (6): 673~686
32 Dale BE, Leong CK, Pham TK, Esquivel VM, Rios I, Latimer VM. Hydrolysis of lignocellulosics at low enzyme levels: Application of the AFEX process. Bioresour Technol, 1996, 56 (1): 111~116
33 Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE. Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol, 2005, 96 (18): 2014~2018
34 Kaar WE, Holtzapple MT. Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass & Bioenergy, 2000, 18 (3): 189~199
35 Kim S, Holtzapple MT. Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol, 2005, 96 (18): 1994~2006
36 Kim S, Holtzapple MT. Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol, 2006, 97 (4): 583~591
37 Gandia J, Holtzapple MT, Ferrerb A, Byersc FM, Turnerc ND, Nagwania M, Chang S. Lime treatment of agricultural residues to improve rumen digestibility. Anim Feed Sci & Technol, 1997, 68 (3~4): 195~211
38 Kaar WE, Holtzapple MT. Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass & Bioenergy, 2000, 18 (3): 189~199
39 Chang VS, Kaar WE, Burr B, Holtzapple MT. Simultaneous saccharification and fermentation of lime-treated biomass. Biotechnol Lett, 2001, 23 (16): 1327~1333
40 Schmidt AS, Thomsen AB. Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol, 1998, 64 (2): 139~151
41 Gaspar M, Kalman G, Reczey K. Corn fiber as a raw material for hemicellulose and ethanol production. Proc Biochem, 2007, 42 (7): 1135–1139
42 Cara C, Ruiz E, Ballesterosb I, Negro MJ, Castro C. Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Proc Biochem, 2006, 41 (2): 423~429
43 Hakala TK, Maijala P, Konn J, Hatakka A. Evaluation of novel wood-rotting polypores and corticioid fungi for the decay and biopulping of Norway spruce (Picea abies) wood. Enzyme & Microb Technol, 2004, 34 (3~4): 255~263
44 Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T. Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci & Bioengin, 2005, 100 (6): 637~643
45 Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour Technol, 2005, 96 (18): 2026~2032
46 Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem, 2007, 9 (1): 63~69
47 Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellose with ionic liquids. J Am Chem Soc, 2002, 124 (18): 4974~4975
48 Heinze T, Schwikal K, Barthel S. Ionic liquids as reaction medium in cellulose functionalization. Macromo Biosci, 2005, 5 (6): 520–525
49 Li CZ, Zhao ZKB. Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Adv Synth Catal, 2007, 349: 1847~1850
50 Dawson L, Boopathy R. Use of post-harvest sugarcane residue for ethanol production. Bioresour Technol, 2007, 98 (9): 1695~1699
51 Persson I, Tjerneld F, Hahn-Hagerdal B. Fungal cellulolytic enzyme production: A review. Proc Biochem, 1991, 26 (2): 65~74
52 Yu XB (余晓斌), Koo Y (具润漠). The cellulase production by Trichoderma reesei in submerged fermentation. Food & Fermentation Ind (食品与发酵工业), 1997, 24 (1): 20~25
53 Thygesen A, Thomsen AB, Schmidt AS, Jorgensen H, Ahring BK, Olsson L. Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzyme & Microb Technol, 2003, 32 (5): 606~615
54 Dien BS, Li XL, Iten LB, Jordan DB, Nichols NN, O’Bryan PJ, Cotta MA. Enzymatic saccharification of hot-water pretreated corn fiber for production of monosaccharides. Enzyme & Microb Technol, 2006, 39 (5): 1137~1144
55 Glazer AN, Nikaido H. Microbial Biotechnology-Fundamentals of Applied Microbiology. Chen SW (陈守文), Yu ZN (喻子牛) Translated. New York: W.H. Freeman and Company, 1995
56 Kadam KL, Schmidt SL. Evaluation of Candida acidothermophilum in ethanol production from lignocellulosic biomass. Appl Microbiol Biotechnol, 1997, 48 (6): 709~713
57 Agbogbo FK, Coward-Kelly G, Torry-Smith M, Wenger KS. Fermentation of glucose/xylose mixtures using Pichia stipitis. Proc Biochem, 2006, 41 (11): 2333~2336
58 Sanchez G, Pilcher L, Roslander C, Modig T, Galbe M, Liden G. Dilute-acid hydrolysis for fermentation of the Bolivian straw material Paja Brava. Bioresour Technol, 2004, 93 (3): 249~256
59 Chatterjee S, Adhya M, Guha AK, Chatterjee BP. Chitosan from Mucor rouxii: Production and physico-chemical characterization. Proc Biochem, 2005, 40 (1): 395~400
60 Karimi K, Emtiazi G, Taherzadeh MJ. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Engzyme & Microbial Technol, 2006, 40 (1): 138~144
61 Karimi K, Brandberg T, Edebo L, Taherzadeh MJ. Fed-batch cultivation of Mucor indicus in dilute-acid lignocellulosic hydrolyzate for ethanol production. Biotechnol Lett, 2005, 27 (18): 1395~1400
62 Fang AQ (方蔼祺), Li SL (李绍兰), Chen YW (陈有为), Li P (李萍). Study on protoplast fusion between a thermotolerant yeast and Saccharomyces cerevisiae. Chin J Biotechnol (生物工程学报), 1990, 6 (3): 224~229
63 Wen TQ (文铁桥), Zhao XH (赵学慧). Construction of thermotolerant ethanol-producing yeast by protoplast fusion. Acta Microbiol Sin (微生物学报), 1999, 39, (2): 141~147
64 Liu JK (刘继开), Tian S (田沈), Zhang YZ (张亚珍), Zhang JX (张金鑫), Yang XS (杨秀山). Construction of recombinant yeast metabolizing xylose and glucose. Renewable Energy Resourc (可再生能源), 2007, 25 (1): 13~16
65 Moniruzzaman M, Ingram LO. Ethanol production from dilute acid hydrolysate of rice hulls using genetically engineered Escherichia coli. Biotechnol Lett, 1998, 20 (10): 943–947
66 Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW. Metabolic engineering of bacteria for ethanol production. Biotechnol & Bioengin, 1998, 58 (2~3): 204~214
67 Golias H, Dumsday GJ, Stanley GA, Pamment NB. Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: Comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and Zymomonas mobilis. J Biotechnol, 2002, 96 (2): 155~168
68 Barron N, Marchant R, McHale L, McHale AP. Ethanol production from cellulose at 45 ℃ using a batch-fed system containing alginate-immobilized Kluyveromyces marxianus IMB3. World J Microbiol & Biotechnol, 2006, 12 (1): 103~104
69 Alfani F, Gallifuoco A, Saporosi A, Spera A, Cantarella M. Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. J Ind Microbiol & Biotechnol, 2000, 25 (4): 184~192
70 Hack CJ, Marchant R. Ethanol adaptation in a thermotolerant yeast strain Kluyveromyces marxianus IMB3. J Ind Microbiol & Biotechnol, 1998, 20 (3~4): 227~231
71 Boyle M, Barron N, McHale AP. Simultaneous saccharification and fermentation of straw to ethanol using the thermotolerant yeast strain Kluyveromyces marxianus Imb3. Biotechnol Lett, 1997, 19 (1): 49~51
72 Kourkoutas Y, Dimitropoulou S, Kanellaki M, Marchant R, Nigam P, Banat IM, Koutinas AA. High-temperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3 yeast immobilized on delignified cellulosic material. Bioresour Technol, 2002, 82 (2): 177~181
73 Limtong S, Sringiew C, Yongmanitchai W. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol, 2007, 98: 3367~3374
74 Qian MY (钱名宇), Zhang J (张晶), Liu JK (刘继开), Yang XS (杨秀山). Ethanol production from dilute-acid lignocellulose hydrolysates by free cells. Acta Energiae Solaris Sin (太阳能学报), 2006, 27 (4): 618~622
75 Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl & Environ Microbiol, 2004, 70 (2): 1207~1212
76 Zhou SD, Ingram LO. Simultaneous saccharification and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supplemental cellulose. Biotechnol Lett, 2001, 23 (18): 1455~1462
77 Den Haan R, Rose SH, Lynd LR, van Zyl WH. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metabolic Engin, 2007, 9 (1): 87~94
78 Helle SS, Duff SJB, Cooper DG . Effect of surfactants on cellulose hydrolysis. Biotechnol & Bioengin, 42 (5): 611~617
79 Eriksson T, Borjesson J, Tjerneld F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme & Microb Technol, 2002, 31 (3): 353~364
80 Alkasrawi M, Eriksson T, Borjesson J, Wingren A, Galbe M, Tjerneld F, Zacchi G. The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzyme & Microb Technol, 2003, 33 (1): 71~78
81 Borjesson J, Peterson R, Tjerneld F. Enhanced enzymatic conversion of softwood lignocellulose by poly (ethylene glycol) addition. Enzyme & Microb Technol, 2007, 40 (4): 754~762
82 Kristensen JB, Borjesson J, Bruun MH, Tjerneld F, Jorgensen H. Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme & Microb Technol, 2007, 40 (4): 888~895
83 Yang B, Wyman CE. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol & Bioengin, 2006, 94 (4): 611~617
84 Philippidis GP, Smith TK. Limiting factors in the simultaneous saccharification and fermentation process for conversion of cellulosic biomass to fuel ethanol. Appl Biochem Biotechnol, 51 (2): 117~124
85 Gusakov AV, Sinitsyn AP, Davydkin IY, Davydkin VY, Protas OV . Enhancement of enzymatic cellulose hydrolysis using a novel type of bioreactor with intensive stirring induced by electromagnetic field. Appl Biochem Biotechnol, 1996, 56 (2): 141~153
86 Wood BE, Aldrich HC, Ingram LO. Ultrasound stimulates ethanol production during the simultaneous saccharification and fermentation of mixed waste office paper. Biotechnol Progr, 1997, 13 (3) : 232~237

相似文献/References:

[1]靳艳玲,甘明哲,周玲玲,等.4个甘薯品种不同生育期的乙醇发酵比较[J].应用与环境生物学报,2009,15(02):262.[doi:10.3724/SP.J.1145.2009.00267]
 JIN Yanling,GAN Mingzhe,et al.Ethanol Production with 4 Varieties of Sweet Potato at Different Growth Stages[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):262.[doi:10.3724/SP.J.1145.2009.00267]
[2]何明雄,祝其丽,潘科,等.利用木质纤维素类生物质发酵生产乙醇重组菌株研究进展[J].应用与环境生物学报,2009,15(04):579.[doi:10.3724/SP.J.1145.2009.00579]
 HE Mingxiong,ZHU Qili,PAN Ke,et al.Progress in Ethanol Production with Lignocellulosic Biomass by Different Recombinant Strains[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):579.[doi:10.3724/SP.J.1145.2009.00579]
[3]杨俊仕,周后珍,李国欣,等.组合工艺处理甘薯燃料乙醇糟液[J].应用与环境生物学报,2010,16(05):730.[doi:10.3724/SP.J.1145.2010.00730]
 YANG Junshi,ZHOU Houzhen,LI Guoxin,et al.Treatment of Wastewater from Alcohol Fuel Production with Sweet Potato by Combined Process[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):730.[doi:10.3724/SP.J.1145.2010.00730]
[4]张良,靳艳玲,陈谦,等.耐高温酵母高浓度发酵生产燃料乙醇工艺优化[J].应用与环境生物学报,2011,17(03):311.[doi:10.3724/SP.J.1145.2011.00311]
 ZHANG Liang,JIN Yanlin,CHEN Qian,et al.Optimization of Ethanol Production by Thermotolerant and High Alcohol-producing Yeast Using Response Surface Analysis[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):311.[doi:10.3724/SP.J.1145.2011.00311]
[5]黄玉红,靳艳玲,赵云,等.鲜甘薯发酵生产燃料乙醇中的降粘工艺[J].应用与环境生物学报,2012,18(04):661.[doi:10.3724/SP.J.1145.2012.00661]
 HUANG Yuhong,JIN Yanling,ZHAO Yun,et al.Viscosity Reduction During Fuel Ethanol Production by Fresh Sweet Potato Fermentation[J].Chinese Journal of Applied & Environmental Biology,2012,18(06):661.[doi:10.3724/SP.J.1145.2012.00661]
[6]邓辉,王成,吕豪豪,等.堆肥过程放线菌演替及其木质纤维素降解研究进展[J].应用与环境生物学报,2013,19(04):581.[doi:10.3724/SP.J.1145.2013.00581]
 DENG Hui,WANG Cheng,LÜ,et al.Research Progress in Succession of Actinomycetal Communities and Their Capacity of Degrading Lignocellulose During Composting Process[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):581.[doi:10.3724/SP.J.1145.2013.00581]
[7]涂毅,高秋强,鲍杰.外源功能基因在木质纤维素依赖型乳酸菌Pediococcus acidilactici DQ2中的表达[J].应用与环境生物学报,2013,19(05):811.[doi:10.3724/SP.J.1145.2013.00811]
 TU Yi,GAO Qiuqiang,BAO Jie.Expression of Functional Genes in Lignocellulose-dependent Lactic Acid Bacterium Pediococcus acidilactici DQ2[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):811.[doi:10.3724/SP.J.1145.2013.00811]
[8]黄玉红,靳艳玲,方扬,等.细胞壁多糖水解酶及其在非粮生物质原料转化中的应用研究进展[J].应用与环境生物学报,2013,19(05):881.[doi:10.3724/SP.J.1145.2013.00881]
 HUANG Yuhong,JIN Yanling,FANG Yang,et al.Application and Progress of Plant Cell Wall Polysaccharide Hydrolase in Non-food Based Biomass Conversation[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):881.[doi:10.3724/SP.J.1145.2013.00881]
[9]谭芙蓉,吴波,代立春,等.纤维素类草本能源植物的研究现状[J].应用与环境生物学报,2014,20(01):162.[doi:10.3724/SP.J.1145.2014.00162]
 TAN Furong,WU Bo,DAI Lichun,et al.Research and prospect of cellulosic herbaceous energy plant[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):162.[doi:10.3724/SP.J.1145.2014.00162]
[10]周利,汤岳琴,孙照勇,等.基于连续发酵驯化的高耐盐性酿酒酵母的育种[J].应用与环境生物学报,2014,20(03):360.[doi:10.3724/SP.J.1145.2014.11032]
 ZHOU Li,TANG Yueqin,SUN Zhaoyong,et al.Breeding of high salt-tolerant Saccharomyces cerevisiae strains based on continuous ethanol fermentation[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):360.[doi:10.3724/SP.J.1145.2014.11032]

备注/Memo

备注/Memo:
国家“ 863” 计划项目(No. 2007AA100702)和国家科技支持计划(No. 2007BAD78B04)资助
更新日期/Last Update: 2009-01-09