|本期目录/Table of Contents|

[1]脱金华,任洪艳,刘方舟,等.利用实际市政污水培养小球藻及优化外加碳源[J].应用与环境生物学报,2019,25(01):184-190.[doi:10.19675/j.cnki.1006-687x.2018.05018]
 TUO Jinhua,REN Hongyan,et al.Cultivation of Chlorella vulgaris using real municipal wastewater and optimization of external carbon source[J].Chinese Journal of Applied & Environmental Biology,2019,25(01):184-190.[doi:10.19675/j.cnki.1006-687x.2018.05018]
点击复制

利用实际市政污水培养小球藻及优化外加碳源
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年01期
页码:
184-190
栏目:
研究论文
出版日期:
2019-02-25

文章信息/Info

Title:
Cultivation of Chlorella vulgaris using real municipal wastewater and optimization of external carbon source
作者:
脱金华 任洪艳 刘方舟 陈红芬 阮文权
1江南大学环境与土木工程学院 无锡 214122 2江苏省厌氧生物技术重点实验室 无锡 214122
Author(s):
TUO Jinhua1 2 REN Hongyan1 2** LIU Fangzhou1 2 CHEN Hongfen1 2 RUAN Wenquan1 2
1 School of Environment Science and Civil Engineering, Jiangnan University, Wuxi 214122, China 2 Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
关键词:
小球藻市政污水氮磷CO2粗甘油
Keywords:
Chlorella vulgaris municipal wastewater nitrogen and phosphorus CO2 crude glycerol
分类号:
X703
DOI:
10.19675/j.cnki.1006-687x.2018.05018
摘要:
为探究不同工段市政污水培养小球藻过程中生物量与氮、磷、化学需氧量(COD)的去除效率,利用灭菌前后的进水、初沉池出水、污泥脱水液培养小球藻,经过7 d培养,在未灭菌污泥脱水液中获得最大藻生物量1.17 g/L;总氮、总磷、氨氮、COD的去除率分别为85.3%、99.0%、90.4%、62.0%. 为进一步提高污泥脱水液培养小球藻的生物量,对比两种低成本外加碳源CO2和粗甘油不同浓度(CO2:5、10、15、20%;粗甘油:1、2、4、6 g/L)下的藻生物量与污水处理效果. 结果在5% CO2和2 g/L粗甘油条件下得到最大藻生物量,分别为1.57 g/L和1.45 g/L,氨氮的去除率分别为95.1%和99.3%,总氮的去除率分别为95.5%和97.5%. 本研究表明未灭菌污泥脱水液更适合小球藻的培养,外加碳源于该工段污水中可提高藻生物量和氮的去除,结果可为能源微藻培养耦合实际市政污水处理和生物柴油副产物粗甘油的再利用提供基础参考. (图3 表2 参39)
Abstract:
In order to assess the effect of different municipal wastewaters on algal growth and nutrient (N, P, and chemical oxygen demand [COD]) removal, Chlorella vulgaris (UTEX2714) was cultured in sterile and non-sterile raw, primary effluent and centrate. After 7 days of batch cultivation, the biomass yield in the centrate was the highest at 1.17 g/L. The removal efficiencies of the total nitrogen, total phosphorus, ammonia nitrogen, and COD in centrate were 85.3%, 99.0%, 90.4%, and 62.0%, respectively. Furthermore, to enhance microalgal biomass in the real centrate wastewater, the addition concentrations of CO2 (5, 10, 15, and 20%) and waste glycerol (1, 2, 4, and 6 g/L) were studied during the cultivation of Chlorella vulgaris in the centrate. The results that the optimum concentrations for CO2 and waste glycerol were 5% and 2.0 g/L, respectively, which resulted in biomass content of 1.57 g/L and 1.45 g/L, respectively. The removal efficiencies of ammonia nitrogen were 95.1% and 99.3%, and those of total nitrogen were 95.5% and 97.5%. The results demonstrated that centrate was more suitable for Chlorella vulgaris cultivated in municipal wastewater; the biomass and nitrogen removal were improved by adding a carbon source. These results provide guidance for the cultivation of energy microalgae coupled with municipal wastewater treatment and reuse of crude glycerol obtained as a by-product of the biodiesel industry.

参考文献/References:

1 王海英, 牟晓庆. 城市污水培养富油蛋白小球藻的研究[J]. 中南民族大学学报(自然科学版), 2011, 30 (3): 38-41 [Wang HY, Mu XQ. Cultivation of high oil content Chlorella pyrenoidosa on urban sewage [J]. J South-Central Univ Nationa (Nat Sci Ed), 2011, 30 (3): 38-41]
2 刘艳, 徐岳松, 吴茜, 宋廷富, 张白梅, 乔代蓉, 曹毅, 徐辉林. 雨生红球藻培养和产油脂工艺的优化[J]. 应用与环境生物学报, 2014, 20 (5): 809-816 [Lu Y, Xu YS, Wu Q, Song TF, Zhang BM, Qiao DR, Cao Y, Xu H. Optimization of Haematococcus pluvialis culture and lipid production process [J]. Chin J Appl Environ Biol, 2014, 20 (5): 809-816]
3 Wang L, Min M, Li YC, Chen P, Chen YF, Liu YH, Wang YK, Ruan R. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant [J]. Appl Biochem Biotechnol, 2010, 162 (4): 1174-1186
4 Ji MK, Kim HC, Sapireddy VR, Yun HS, Abou-Shanab RAI, Choi J, Lee W, Timmes TC, Inamuddin, Jeon BH. Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04 [J]. Appl Microbiol & Biotechnol, 2013, 97 (6): 2701-2710
5 Yang CF, Ding ZY, Zhang KC. Growth of Chlorella pyrenoidosa in wastewater from cassava ethanol fermentation [J]. World J Microbiol Biotechnol, 2008, 24 (12): 2919-2925
6 Woertz I, Feffer A, Lundquist T, Nelson Y. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock [J]. J Environ Eng-ASCE, 2009, 135 (11): 1115-1122
7 Bashan Y, Lopez BR, Huss VAR, Amavizca E, Bashan LED. Chlorella sorokiniana, (formerly C. vulgaris ) UTEX 2714, a non-thermotolerant microalga useful for biotechnological applications and as a reference strain [J]. J Appl Phycol, 2016, 28 (1): 113-121
8 Ren HY, Tuo JH, Addy MM, Zhang RC, Lu Q, Anderson E, Chen P, Ruan R. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal [J]. Bioresour Technol, 2017, 245 (Pt A): 1130-1138
9 Ma XC, Zhou WG, Fu ZQ, Cheng YL, Min M, Liu YH, Zhang YK, Chen P, Ruan R. Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system [J]. Bioresour Technol, 2014, 167: 8-13
10 Deng XY, Gao K, Zhang RC, Addy M, Lu Q, Ren HY, Chen P, Liu YH, Ruan R. Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production [J]. Bioresour Technol, 2017, 243: 417
11 Almomani FA, Ormeci B. Performance Of Chlorella vulgaris, Neochloris oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate [J]. Ecol Eng, 2016, 95: 280-289
12 徐鲁燕, 郑立, 韩笑天,崔志松, 郭秀春, 李馨子. 具有群体感应系统微藻共栖细菌的筛选及抑藻活性的研究[J]. 海洋与湖沼, 2012, 43 (6): 1149-1155 [Xu LY, Li Z, Han XT, Cui ZS, Guo XC, Li XZ. Screening of microalgae associated bactira with quorum sensing system and their algicidal activity [J]. Oceanol Et Limnol Sin, 2012, 43 (6): 1149-1155]
13 DeBashan LE, Bashan Y, Moreno M, Lebsky VK, Bustillos JJ. Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense [J]. Revue Can Microbiol, 2002, 48 (6): 514-521
14 He PJ, Mao B, Lü F, Shao LM, Lee DJ, Chang JS. The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters [J]. Bioresour Technol, 2013, 146 (10): 562-568
15 纪雁. 利用味精废水培养普通小球藻以及养藻废水的生物强化处理[D]. 济南: 山东大学, 2014 [Ji Y, Cultivation of Chlorella vulgaris with monosodium glutamate wastewater and treatment of the residule medium by bioaugmentation [D]. Ji’nan: Shandong University, 2014]
16 Yang F, Hanna MA, Sun R. Value-added uses for crude glycerol—a byproduct of biodiesel production [J]. Biotechnol Biofuels, 2012, 5 (1): 5-13
17 Jacob-Lopes E, Scoparo CHG, Queiroz MI, Franco TT. Biotrans-formations of carbon dioxide in photobioreactors [J]. Energy Convers Manage, 2010, 51 (5): 894-900
18 Harris EH. The Chlamydomonas Sourcebook [M]. San Diego, Academic Press Inc., 1989
19 李永强, 陈清香, 师文庆, 熊正烨, 李思东, 李高荣, 凌旭炜. 光照对螺旋藻生长速率的影响[J]. 激光生物学报, 2014, 23 (1): 51-54 [Li YQ, Chen QX, Shi WQ, Xiong ZY, Li SD, Li GR, Ling XW. The effect of light on the growth rate of Spirulina [J]. Acta Laser Biol Sin, 2014, 23 (1): 51-54]
20 Zhu LD, Wang ZM, Shu Q, Takala J, Hiltunen E, Feng PZ, Yuan ZH. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment [J]. Water Res, 2013, 47 (13): 4294-4302
21 李超, 冯玉杰, 张大伟, 初晓婉. 以市政污水为底物的微藻油脂积累和碳流分析[J]. 可再生能源, 2012, 6: 93-96 [Li C, Feng YJ, Zhang DW. Microalgae lipid accumulation and carbon flux analysis based on municipal wastewater used as medium [J]. Renew Energy Resour, 2012, 6: 93-96]
22 刘磊, 杨雪薇, 陈朋宇, 陈家杨. 3种微藻对人工污水中氮磷去除效果的研究[J]. 广东农业科学, 2014, 41 (11): 172-176 [Liu L, Yang XW, Chen MY, Chen JY. Efficiency of nitrogen and phosphorus removal from artificial wastewater by three kinds of microalgae [J]. Guangdong Agric Sci, 2014, 41 (11): 172-176]
23 Razzak SA, Ali SAM, Hossain MM, Lasa H. Biological CO2 fixation with production of microalgae in wastewater—A review [J]. Renew Sustain Energy Rev, 2017, 76: 379-390
24 Ge SJ, Champagne P. Nutrient removal, microalgal biomass growth, harvesting and lipid yield in response to centrate wastewater loadings [J]. Water Res, 2015, 88: 604-612
25 王秀锦, 李兆胜, 邢冠岚, 李卓凝, 袁红莉, 杨金水. 蛋白核小球藻Chlorella pyrenoidosa-15的异养培养条件优化及污水养殖[J]. 环境科学, 2012, 33 (8): 2735-2740 [Wang XJ, Li ZS, Xing GL, Li ZN, Yuan HL, Yang JS. Optimization of Chlorella pyrenoidosa-15 photoheterotrophic culture and its use in wastewater treatment [J]. Environ Sci, 2012, 33 (8): 2735-2740]
26 Vílchez C, Garbayo I, Lobato MV, Lobao MV, Vega JM. Microalgae-mediated chemicals production and wastes removal [J]. Enzyme Microb Technol, 1997, 20 (8): 562-572
27 Arbib Z, Ruiz J, lvarezdíaz P, Garrido-Perez C, Perales J. Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production [J]. Water Res, 2014, 49 (1): 465-474
28 Tuantet K, Temmink H, Zeeman G, Janssen M, Wiffels RH, Buisman CJN. Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor [J]. Water Res, 2014, 55 (10): 162-174
29 欧阳克氙, 刘建平, 蔡力创. 小球藻在废水处理上的应用进展[J]. 江西科学, 2014, 32 (4): 515-519 [Ouyang KX, Liu JP, Cai LC. Application of Chlorella in the wastewater treatment [J]. Jiangxi Sci, 2014, 32 (4): 515-519]
30 巫小丹, 阮榕生, 王辉, 罗珊珊, 吴盼盼, 刘玉环. 菌藻共生系统处理废水研究现状及发展前景[J]. 环境工程, 2014, 32 (3): 34-37 [Wu XD, Ruan RS, Wang H, Luo SS, Wu PP, Liu YH. Current status and prospect of sewage purification with the algal-microbe symbiotic system [J]. Environ Eng, 2014, 32 (3): 34-37]
31 刘晨临, 王秀良, 张学成. 卡德藻自养、异养与兼养培养的比较研究[J]. 青岛海洋大学学报(自然科学版), 2002, 32(4): 579-584 [Liu CL, Wang XL, Zhang XC. Difference between autotrophic, heterotrophic and mixotrophic growth of Tetraselmis sp. [J]. J Ocean Univ Qiangdao (Nat Sci Ed), 2002, 32 (4): 579-584]
32 王晶, 杨昌柱, 濮文虹, 龙 焙, 时亚飞, 李野, 杨家宽. 市政污泥深度脱水滤液水质特性研究[J]. 环境工程, 2014 (s1): 107-110 [Wang J, Yang CZ, Pu WH, Long B, Shi YF, Li Y, Yang JK. Analysis of water quality of the filtrate from municipal sludge deep dewatering process [J]. Environ Eng, 2014 (s1): 107-110]
33 Rahaman MSA, Cheng LH, Xu XH, Zhang L, Chen HL. A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes [J]. Renew Sustain Rev, 2011, 15 (8): 4002-4012
34 黄冠华, 任庆功, 何环, 匡亚莉, 冷云伟. 通气对光合自养培养下蛋白核小球藻生长和有机碳成分含量的影响[J]. 可再生能源, 2011, 29 (5): 94-98 [Huang GH, Ren QG, He H, Kuang YL, Leng YW. The effects of aeration on the growth and organic carbon component contents under photoautotrophy condition [J]. Renew Energy Resour, 2011, 29 (5): 94-98]
35 姜加伟, 程丽华, 徐新华, 张林, 陈欢林. 微藻固定转化烟气CO2强化技术[J]. 化工进展, 2014, 33 (7): 1884-1894 [Jiang JW, Cheng LH, Xu XH, Zhang Lin, Chen HL. Intensified technology for microalgal CO2 fixation and conversion from flue gas [J]. Chem Ind Eng Prog, 2014, 33 (7): 1884-1894]
36 孙妮, 向文洲, 何慧, 陈峰. 碳氮比和光强对小球藻合成虾青素的影响[J]. 微生物学通报, 2008, 35 (3): 353-357 [Sun N, Xiang WZ, He H, Chen Feng. Effects of C/N ratio and light intensity on the production of astaxanthin by Chlorella zofingiensis [J]. Microbiology, 2008, 35 (3): 353-357]
37 Pere-zgarcia O, Escalante FM, Debashan LE, Bashan Y. Heterotrophic cultures of microalgae: metabolism and potential products [J]. Water Res, 2011, 45 (1): 11-36
38 谢通慧, 张永奎. 甘油对小球藻生长及代谢产物的影响[J]. 中国生物柴油, 2011, 5: 11-14 [Xie TH, Zhang YK. Glycerol on the growth and metabolites of Chlorella [J]. Chin Biodiesel, 2011, 5: 11-14]
39 胡霞. 气升式微生物碳捕获燃料电池固定CO2及积累油脂研究[D]. 大连: 大连理工大学, 2016 [Hu X. CO2 fixation and lipid accumulation by air-lift-type microbial carbon capture fuel cell [D]. Dalian: University Technol, 2016]

相似文献/References:

[1]李云,黄耀佳,王晓蓉.悬沙对小球藻生长的影响[J].应用与环境生物学报,2011,17(06):910.[doi:10.3724/SP.J.1145.2011.00910]
 LI Yun,HUANG Yaojia,WANG Xiaorong.Effect of Suspended Solids on Growth of Chlorella sp.[J].Chinese Journal of Applied & Environmental Biology,2011,17(01):910.[doi:10.3724/SP.J.1145.2011.00910]
[2]李云,黄耀佳,王晓蓉.UV-B辐射下悬沙对小球藻生长和DNA损伤的影响[J].应用与环境生物学报,2012,18(04):605.[doi:10.3724/SP.J.1145.2012.00605]
 LI Yun,HUANG Yaojia,WANG Xiaorong.Effects of Suspended Solids on Growth and DNA Damage of Chlorella sp. Exposed to UV-B Radiation[J].Chinese Journal of Applied & Environmental Biology,2012,18(01):605.[doi:10.3724/SP.J.1145.2012.00605]
[3]孙建瑞,宋涛,孙显,等.富油小球藻Chlorella protothecoides胞内多糖和油脂提取工艺优化[J].应用与环境生物学报,2014,20(04):615.[doi:10.3724/SP.J.1145.2013.12039]
 SUN Jianrui,SONG Tao,SUN Xian,et al.Extraction optimization of intracellular polysaccharide and lipid from oleaginous Chlorella protothecoides[J].Chinese Journal of Applied & Environmental Biology,2014,20(01):615.[doi:10.3724/SP.J.1145.2013.12039]
[4]陈红芬 任洪艳** 刘方舟 阮文权.小球藻和活性污泥共培养体系处理养殖废水*[J].应用与环境生物学报,2019,25(04):1.
 Treatment of aquaculture wastewater using Chlorella Vulgaris and Activated Sludge co-culture system *.CLC X714[J].Chinese Journal of Applied & Environmental Biology,2019,25(01):1.

更新日期/Last Update: 2019-02-25