|本期目录/Table of Contents|

[1]王明秀,栾威,马欣荣,等.少根紫萍淀粉合成关键基因对寡营养胁迫的响应[J].应用与环境生物学报,2019,25(01):128-135.[doi:10.19675/j.cnki.1006-687x.2018.04021]
 WANG Mingxiu,LUAN Wei,et al.Responses of starch biosynthesis-related genes to nutrition starvation in Landoltia punctata[J].Chinese Journal of Applied & Environmental Biology,2019,25(01):128-135.[doi:10.19675/j.cnki.1006-687x.2018.04021]
点击复制

少根紫萍淀粉合成关键基因对寡营养胁迫的响应
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年01期
页码:
128-135
栏目:
研究论文
出版日期:
2019-02-25

文章信息/Info

Title:
Responses of starch biosynthesis-related genes to nutrition starvation in Landoltia punctata
作者:
王明秀 栾威 马欣荣 陶向 赵云
1四川大学生命科学学院 成都 610041 2中国科学院成都生物研究所 成都 610041
Author(s):
WANG Mingxiu1 2 LUAN Wei2 MA Xinrong2 TAO Xiang2** & ZHAO Yun1**
1 College of Life Sciences, Sichuan University, Chengdu 610041, China 2 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
关键词:
少根紫萍寡营养淀粉合成基因转录组荧光定量PCR
Keywords:
Landoltia punctata nutrient starvation starch biosynthesis gene transcriptome qRT-PCR
分类号:
Q949.717.03
DOI:
10.19675/j.cnki.1006-687x.2018.04021
摘要:
浮萍是一种形态高度退化的开花植物,环境适应性广,生长条件适宜时可以接近指数增长的速度在16-48 h内实现生物量的翻倍. 以寡营养处理,少根紫萍(Landoltia punctata)淀粉含量可在7 d内提高到45%以上(干重). 通过深入分析转录组数据,分别挖掘到ADP葡萄糖焦磷酸化酶编码基因(LpAGP)5个、颗粒结合型淀粉合酶基因(LpGBSS)2个、可溶性淀粉合酶基因(LpSSS)2个、淀粉分支酶基因(LpSBE)5个、异淀粉酶基因7个(LpISA)、普鲁兰酶基因(LpPUL)1个. 转录组定量结果表明LpAGPS1、LpAGPL2、LpAGPL3、LpGBSSI、LpGBSSII、LpSBEI-1、LpISA3和LpPUL1的表达量均因寡营养处理而上调. 通过qRT-PCR检测LpAGPs等16个淀粉合成关键基因的表达量,发现绝大部分淀粉合成相关基因表达量上调,而参与淀粉降解途径相关基因(如α-淀粉酶和β-淀粉酶编码基因)的表达量因寡营养处理而下调. 这种不同的调节方式促使少根紫萍淀粉合成“开源节流”,淀粉得以快速积累. 本研究结果可为进一步研究少根紫萍淀粉合成关键基因功能及淀粉积累机制奠定基础. (图3 表2 参33)
Abstract:
Landoltia punctata can accumulate high starch content, up to > 45% (dry weight) in 7 days, upon nutrient starvation. This study aimed to identify the genes related to starch metabolism and their expression patterns in response to starvation in L. punctata. The starvation-stress response transcriptome of L. punctata was carefully analyzed and used for the identification and quantification of starch metabolism-related genes. A quantitative real time-polymerase chain reaction (qRT-PCR) was performed to verify the quantification results. The results showed the presence of five LpAGP, two LpGBSS, two LpSSS, five LpSBE, seven LpISA, and one LpPUL genes. The RNA-Seq quantification results showed that LpAGPS1, LpAGPL2, LpAGPL3, LpGBSSI, LpGBSSII, LpSBEI-1, LpISA3, and LpPUL1 were all up-regulated by nutrient starvation. The qRT-PCR results of 16 starch metabolism key genes verified that most of them were up-regulated by starvation, while the expression of α-amylase and β-amylase were down-regulated. The opposite expression change patterns of starch biosynthesis- and degradation-related key genes resulted in the accumulation of starch. This study paves the way for further studies on elucidating the function and mechanism starch metabolism-related genes in L. punctata.

参考文献/References:

1 Preiss J, Ball K, Smith-White B, Iglesias A, Kakefuda G, Li L. Starch biosynthesis and its regulation [J]. Biochem Soc Trans, 1991, 19 (3): 539-547
2 Zeeman SC, Kossmann J, Smith AM. Starch: its metabolism, evolution, and biotechnological modification in plants [J]. Annu Rev Plant Biol, 2010, 61 (1): 209-234
3 Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue [J]. Plant Cell Physiol, 2002, 43 (7): 718-725
4 Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE, Giroux MJ. Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield [J]. Proc Natl Acad Sci USA, 2002, 99 (3): 1724-1729
5 Jeon JS, Ryoo N, Hahn TR, Walia H, Nakamura Y. Starch biosynthesis in cereal endosperm [J]. Plant Physiol Biochem, 2010, 48 (6): 383-392
6 Datko AH, Mudd SH, Giovanelli J. Lemna paucicostata Hegelm. 6746: development of standardized growth conditions suitable for biochemical experimentation [J]. Plant Physiol, 1980, 65 (5): 906-912
7 Skillicorn P, Spira W, Journey W. Duckweed aquaculture: a new aquatic farming system for developing countries [M]. Washington: World Bank, 1993: 81-124
8 Tao X, Fang Y, Xiao Y, Jin YL, Ma XR, Zhao Y, He KZ, Zhao H, Wang HY. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation [J]. Biotechnol Biofuel, 2013, 6: 72
9 Liu Y, Fang Y, Huang M, Jin Y, Sun J, Tao X, Zhang G, He K, Zhao Y, Zhao H. Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) II: transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk [J]. Biotechnol Biofuel, 2015, 8: 64
10 Landolt E, Kandeler R. Biosystematics Investigation in the Family of Duckweeds (Lemnacea) (Vol. 4). The Family of the Lemnacea: A Monographic Study [M]. Zurich: Veroff Geobot Inst ETH, 1987
11. Blazey EB, McClure JW. The distribution and taxonomic significance of lignin in the Lemnaceae [J]. Am J Bot, 1968, 55: 1240-1245
12 El-Shafai SA, El-Gohary FA, Nasr FA, van der Steen NP, Gijzen HJ. Nutrient recovery from domestic wastewater using a UASB-duckweed ponds system [J]. Bioresource Technol, 2007, 98 (4): 798-807
13 Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence [J]. J Mol Biol, 2000, 300 (4): 1005-1016
14 Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools [J]. Nat Protoc, 2007, 2 (4): 953-971
15 Emanuelsson O, Nielsen H, Von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites [J]. Protein Sci, 1999, 8 (5): 978-984
16 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0 [J]. Mol Biol Evol, 2013, 30 (12): 2725-2729
17 Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation [J]. Bioinformatics, 2007, 23 (1): 127-128
18 Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. Nat Biotechnol, 2011, 29 (7): 644-652
19 Liu Y, Fang Y, Huang M, Jin Y, Sun J, Tao X, Zhang G, He K, Zhao Y, Zhao H. Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) I: transcriptome analysis of the effects of uniconazole on chlorophyll and endogenous hormone biosynthesis [J]. Biotechnol Biofuel, 2015, 8: 57
20 Wang W, Haberer G, Gundlach H, Glasser C, Nussbaumer T, Luo MC, Lomsadze A, Borodovsky M, Kerstetter RA, Shanklin J, Byrant DW, Mockler TC, Appenroth KJ, Grimwood J, Jenkins J, Chow J, Choi C, Adam C, Cao XH, Fuchs J, Schubert I, Rokhsar D, Schmutz J, Michael TP, Mayer KF, Messing J. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle [J]. Nat Commun, 2014, 5: 3311
21 Wang W, Messing J. Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed) [J]. BMC Plant Biol, 2012, 12: 5
22 Smart CC, Trewavas AJ. Abscisic-acid-induced turion formation in Spirodela polyrrhiza L III. Specific changes in protein synthesis and translatable RNA during turion development [J]. Plant Cell Environ, 1984, 7 (2): 121-132
23 Liu Y, Wang XH, Fang Y, Huang MJ, Chen XY, Zhang Y, Zhao H. The effects of photoperiod and nutrition on duckweed (Landoltia punctata) growth and starch accumulation [J]. Ind Crop Prod, 2018, 115: 243-249
24 Zhao Z, Shi HJ, Wang ML, Cui L, Zhao H, Zhao Y. Effect of nitrogen and phosphorus deficiency on transcriptional regulation of genes encoding key enzymes of starch metabolism in duckweed (Landoltia punctata) [J]. Plant Physiol Bioch, 2015, 86: 72-81
25 James MG, Robertson DS, Myers AM. Characterization of the maize gene sugary1, a determinant of starch composition in kernels [J]. Plant Cell, 1995, 7 (4): 417-429
26 Zeeman SC, Umemoto T, Lue W-L, Au-Yeung P, Martin C, Smith AM, Chen J. A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen [J]. Plant Cell, 1998, 10 (10): 1699-1711
27 Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis [J]. Plant Physiol, 2001, 126 (2): 524-535
28 Buer CS, Djordjevic MA. Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana [J]. J Exp Bot, 2009, 60 (3): 751-763
29 Martin C, Gerats T. Control of pigment biosynthesis genes during petal development [J]. Plant Cell, 1993, 5 (10): 1253-1264
30 Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M. Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans [J]. Int J Mol Sci, 2013, 14 (2): 3540-3555
31 Tao X, Fang Y, Huang MJ, Xiao Y, Liu Y, Ma XR, Zhao H. High flavonoid accompanied with high starch accumulation triggered by nutrient starvation in bioenergy crop duckweed (Landoltia punctata) [J]. BMC Genomics, 2017, 18: 166
32 李琪, 方扬, 许亚良, 赖烦, 苏羽华, 靳艳玲, 赵海. 少根紫萍对微污染地表水的净化及淀粉积累[J]. 应用与环境生物学报, 2018, 24 (6): 1324-1329 [Li Q, Fang Y, Xu YL, Lai F, Su YH, Jin YL, Zhao H. Duckweed Landoltia punctate purifying micro-polluted surface water and producing starch [J]. Chin J Appl Environ Biol, 2018, 24 (6): 1324-1329]
33 陈晓仪, 杨千叶, 赵琦. 不同光周期对浮萍生长及淀粉积累的影响[J]. 北方园艺, 2017, 22: 50-54 [Chen XY, Yang QY, Zhao. Effective of different photoperiod on the growth and starch accumulation of duckweed [J]. North Horticult, 2017, 22: 50-54]

相似文献/References:

[1]丁彦强,方扬,靳艳玲,等.基于叶绿体基因组的浮萍亚科系统进化[J].应用与环境生物学报,2017,23(2):215.[doi:10.3724/SP.J.1145.2016.04036]
 DING Yanqiang,FANG Yang,et al.Systematic evolution of Lemnoideae determined based on chloroplast genome analysis[J].Chinese Journal of Applied & Environmental Biology,2017,23(01):215.[doi:10.3724/SP.J.1145.2016.04036]
[2]李志丹,方扬,靳艳玲,等.少根紫萍转录因子及其营养胁迫下的表达[J].应用与环境生物学报,2018,24(01):97.[doi: 10.19675/j.cnki.1006-687x.2017.04015]
 LI Zhidan,FANG Yang,et al.Transcription factors and their expression in $Landoltia punctata$ under nutrient starvation[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):97.[doi: 10.19675/j.cnki.1006-687x.2017.04015]
[3]李琪,方扬,许亚良,等.少根紫萍对微污染地表水的净化及淀粉积累能力[J].应用与环境生物学报,2018,24(06):1324.[doi:10.19675/j.cnki.1006-687x.2018.02023]
 LI Qi,et al..Duckweed Landoltia punctata purifies micro-polluted surface water and produces starch[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):1324.[doi:10.19675/j.cnki.1006-687x.2018.02023]

更新日期/Last Update: 2019-02-25