|本期目录/Table of Contents|

[1]葛露露 孟庆权 林宇 何宗明** 邱岭军 胡欢甜.滨海沙地不同树种人工林的碳储量及其分配格局*[J].应用与环境生物学报,2018,24(04):1-10.[doi:10.3724/SP.J.1145.2017.10016]
 GE Lulu,MENG Qing quan,LIN Yu,et al.Carbon storage and its allocation of different plantations in a sandy coastal plain area*[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):1-10.[doi:10.3724/SP.J.1145.2017.10016]
点击复制

滨海沙地不同树种人工林的碳储量及其分配格局*()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年04期
页码:
1-10
栏目:
研究论文
出版日期:
2018-08-25

文章信息/Info

Title:
Carbon storage and its allocation of different plantations in a sandy coastal plain area*
文章编号:
201710016
作者:
葛露露1 孟庆权1 林宇2 何宗明1** 邱岭军1 胡欢甜1
1福建农林大学林学院 福州 350002
2福建省长乐大鹤国有防护林场 长乐 350212
Author(s):
GE Lulu1 MENG Qing quan1 LIN Yu2 HE Zongming1** QIU Lingjun1 & HU Huantian1
1College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China?
2Changle Dahe State-owned Protection Forest Farm of Fujian Province, Changle350212, China
关键词:
生物量碳储量滨海沙地人工林
Keywords:
biomass carbon storage sandy coastal plain area plantation
DOI:
10.3724/SP.J.1145.2017.10016
摘要:
基于福州市滨海后沿沙地上营造的人工林的调查,研究尾巨桉、木麻黄、纹荚相思3种人工林生态系统的碳含量、碳储量及分配格局。结果表明:尾巨桉、木麻黄、纹荚相思不同器官平均碳含量分别为456.08-482.68 g ·kg-1、431.89-464.90 g ·kg-1、472.93-505.10 g ·kg-1。相同树种不同器官之间和相同器官不同树种之间的碳含量均存在显著差异(P<0.05)。不同林分间乔木层的碳储量表现为木麻黄(32.89 t ·hm-2)>纹荚相思(31.33 t·hm-2)>尾巨桉(30.20 t·hm -2),其中,乔木层各器官碳储量均以树干(10.92 t·hm -2、10.36 t·hm -2、15.00 t·hm-2)最大,分别占各自乔木层碳储量的33.20%、33.06%、49.67%;地被层(包括林下植被层和凋落物层)的碳储量表现为尾巨桉(6.42 t·hm -2)>纹荚相思(6.19 t·hm -2)>木麻黄(4.57 t·hm -2),其中凋落物层碳储量均远远大于草本层碳储量;土壤层的碳储量表现为木麻黄(8.02 t·hm-2)>纹荚相思(7.31 t·hm-2)>尾巨桉(6.42 t·hm-2)。这3种人工林生态系统总碳储量表现为木麻黄(45.48 t·hm -2)>纹荚相思(44.83 t·hm -2)>尾巨桉(43.04 t·hm -2),且碳储量分布格局均为乔木层>土壤层>凋落物层>草本层。因而,滨海沙地这3种人工林生态系统固碳效益无显著差异,纹荚相思、尾巨桉和木麻黄一样都是很好的固碳树种。(图0表8参31)
Abstract:
Based on the survey of plantations in southeast coastal area of Fuzhou city, we investigated carbon content, storage and allocation in Eucalyptus urophylla × E. grandis, Casuarina equisetifolia and Acacia aulacocarpa plantation ecosystem s. The results showed that the average carbon contents of different organs in Eucalyptus urophylla × E. grandis, Casuarina equisetifolia and Acacia aulacocarpa ranged were from 456.08 g·kg-1 to 482.68 g·kg-1,431.89 g·kg-1 to 464.90 g·kg -1, and 472.93 g·kg-1 to 505.10 g·kg -1, respectively. There were significant differences in carbon contents among different organs of the same species and among the same organ of different species. The tree layer carbon storages were ranked as: Casuarinaequisetifolia(32.89 t·hm-2)>Acacia aulacocarpa(31.33 t·hm-2) >Eucalyptus urophylla × E. grandis(30.20 t·hm-2). Stems stored the highest amounts of carbon (10.92 t·hm -2, 10.36 t·hm -2, 15.00 t·hm-2), accounting for 33.20%, 33.06%, 49.67% of carbon storage in the tree layer. The ground cover (including understory vegetation layer and litter layer) carbon storages were ranked as: Eucalyptus urophylla × E. grandis(6.42 t·hm-2) >Acacia aulacocarpa(6.19 t·hm-2) >Casuarina equisetifolia(4.57 t·hm-2) , and the carbon storage of litter layer was much higher than that of herb layer. The soil layer carbon storages were ranked as: Casuarina equisetifolia (8.02 t·hm-2) >Acacia aulacocarpa(7.31 t·hm-2) >Eucalyptus urophylla × E. grandis(6.42 t·hm-2). The ecosystem carbon storages were ranked as: Casuarina equisetifolia (45.48 t·hm-2) >Acacia aulacocarpa(44.83 t·hm-2) >Eucalyptus urophylla × E. grandis(43.04 t·hm-2). For all the tree species, tree layer stored the greatest amount of carbon, followed by soil layer and litter layer, while C storage in the herb layer was the lowest. Therefore, there is no significant differences in carbon sequestration benefits of the 3 plantations in southeast coastal area, and Acaciaaulacocarpa, Eucalyptus urophylla × E. grandis are good carbon fixing trees like Casuarina equisetifolia.

相似文献/References:

[1]任海,彭少麟,余作岳,等.鹤山针叶混交林的光能利用效率[J].应用与环境生物学报,1996,2(01):15.
 Ran Hai,Peng Shaolin,Yu Zuoyue,et al.EFFICIENCY OF SOLAR RADIATION UTILIZATION BY CONIFEROUS MIXED FOREST IN HESHAN[J].Chinese Journal of Applied & Environmental Biology,1996,2(04):15.
[2]唐景春,KATAYAMA,Arata.醌类图谱分析在环境微生物生态测定中的应用[J].应用与环境生物学报,2004,10(04):530.
 TANG Jingchun,et al..Application of quinone profile analysis for the characterization of microbial ecology in environment[J].Chinese Journal of Applied & Environmental Biology,2004,10(04):530.
[3]田耀华,冯玉龙.微生物研究在土壤质量评估中的应用[J].应用与环境生物学报,2008,14(01):132.
 TIAN Yaohua,et al..Application of Microbial Research in Evaluation of Soil Quality[J].Chinese Journal of Applied & Environmental Biology,2008,14(04):132.
[4]邓宇,华兆哲,** 赵志军,等.氮源对枯草芽孢杆菌WSHDZ-01合成过氧化氢酶的影响[J].应用与环境生物学报,2008,14(04):544.
[5]包维楷,雷波.青藏高原东部原始云杉林及其系列采伐迹地3个林地藓类种群结构与生物量的差异性评估[英][J].应用与环境生物学报,2009,15(01):8.[doi:10.3724/SP.J.1145.2009.00008]
 BAO Weikai,LEI Bo.Evaluating the Changes in Structure and Biomass of Three Common Forest-floor Mosses in Cutovers and Primary Spruce Forest in the Eastern Tibetan Plateau[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):8.[doi:10.3724/SP.J.1145.2009.00008]
[6]程煜,洪伟,吴承祯,等.木荷地上部分生物量分布特征与生产力[J].应用与环境生物学报,2009,15(03):318.[doi:10.3724/SP.J.1145.2009.00318]
 CHENG Yu,HONG Wei,WU Chengzhen,et al.Distribution Characters of Schima superba Aboveground Biomass and Its Produdtivity[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):318.[doi:10.3724/SP.J.1145.2009.00318]
[7]陈文年,吴彦,吴宁,等.高山草甸群落生物量在融雪梯度上的变化[J].应用与环境生物学报,2009,15(06):745.[doi:10.3724/SP.J.1145.2009.00745]
 CHEN Wennian,WU Yan,WU Ning,et al.Changes in Community Biomass along Snow-melting Gradient in Alpine Meadow[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):745.[doi:10.3724/SP.J.1145.2009.00745]
[8]孙育平,王晓辉,胡韧,等.南亚热带高产渔业水库——显岗水库敞水区浮游植物群落结构的季节变化特征[J].应用与环境生物学报,2010,16(02):228.[doi:10.3724/SP.J.1145.2010.00228]
 SUN Yuping,WANG Xiaohui,HU Ren,et al.Seasonal Variation of Phytoplankton Communities in Xiangang Reservoir, a Tropical Shallow and High-yield Fishery Reservoir in South China[J].Chinese Journal of Applied & Environmental Biology,2010,16(04):228.[doi:10.3724/SP.J.1145.2010.00228]
[9]张伟东,汪思龙,杨会侠,等.树种和凋落物对杉木林土壤微生物性质的影响[J].应用与环境生物学报,2010,16(02):168.[doi:10.3724/SP.J.1145.2010.00168]
 ZHANG Weidong,WANG Silong,YANG Huixia,et al.Effects of Broad-leaved Trees and Litter on Productivity and Soil Microbes of Chinese Fir Plantation[J].Chinese Journal of Applied & Environmental Biology,2010,16(04):168.[doi:10.3724/SP.J.1145.2010.00168]
[10]张涛,庄平,章龙珍,等.长江口近岸鱼类种类组成及其多样性[J].应用与环境生物学报,2010,16(06):817.[doi:10.3724/SP.J.1145.2010.00817]
 ZHANG Tao,ZHUANG Ping,ZHANG Longzhen,et al.Composition and Diversity of Fish Species in the Coast of the Yangtze River Estuary[J].Chinese Journal of Applied & Environmental Biology,2010,16(04):817.[doi:10.3724/SP.J.1145.2010.00817]
[11]胡建利,杨万勤,张健,等.川西亚高山冷杉和白桦细根生物量与碳储量特征[J].应用与环境生物学报,2009,15(03):313.[doi:10.3724/SP.J.1145.2009.00313]
 HU Jianli,YANG Wanqin,ZHANG Jian,et al.Characteristics of Biomass and Carbon Stock of Fir and Birch Fine Roots in Subalpine Forest of Western Sichuan, China[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):313.[doi:10.3724/SP.J.1145.2009.00313]

备注/Memo

备注/Memo:
收稿日期: 2017-10-16 ? 接受日期: 2017-11-28
*国家自然科学基金项目(31570604, 41371269)、福建省林业科技项目(闽林科[2014]2号)、福建农林大学部级创新平台资助
**通讯作者(E-mail: hezm2@126.com)
点击摘要页题目后的“PDF”可下载阅读全文;本文为已录用的作者修定稿,尚未经编辑全面修改。
引用本文请注明出处本刊;发表刊期和页码将以正式出版时的安排为准,但DOI确定不变。
更新日期/Last Update: 2017-12-27