|本期目录/Table of Contents|

[1]孙平,章国营,向萍,等.茶树中莽草酸途径DHD/SDH基因的表达调控[J].应用与环境生物学报,2018,24(02):322-327.[doi:10.19675/j.cnki.1006-687x.2017.05014]
 SUN Ping,ZHANG Guoying,XIANG Ping,et al.Expression and regulation of the shikimic acid pathway gene DHD/SDH in tea plant (Camellia sinensis)[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):322-327.[doi:10.19675/j.cnki.1006-687x.2017.05014]
点击复制

茶树中莽草酸途径DHD/SDH基因的表达调控()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年02期
页码:
322-327
栏目:
研究论文
出版日期:
2018-04-25

文章信息/Info

Title:
Expression and regulation of the shikimic acid pathway gene DHD/SDH in tea plant (Camellia sinensis)
作者:
孙平章国营向萍林金科赖钟雄
1福建农林大学园艺学院 福州 350002 2福建农林大学安溪茶学院 安溪 362400
Author(s):
SUN Ping ZHANG Guoying XIANG Ping LIN Jinke LAI Zhongxiong
1 College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China 2Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 362400, China
关键词:
茶树莽草酸途径3-脱氢奎尼酸脱水酶/莽草酸脱氢酶miRNA表达调控
Keywords:
tea shikimic acid 3-dehydroquinic acid dehydrase/shikimate dehydrogenase miRNA expression regulation
分类号:
Q786 : S571.1
DOI:
10.19675/j.cnki.1006-687x.2017.05014
摘要:
3-脱氢奎尼酸脱水酶/莽草酸脱氢酶(DHD/SDH)是茶树莽草酸途径中唯一的双功能酶,一方面催化生成莽草酸,另一方面可以催化生成没食子酸. 为研究DHD/SDH基因在茶树代谢途径中表达及调控模式,通过在线预测、RLM-RACE和qPCR技术探讨miRNA对DHD/SDH的调控及表达模式. 在获得的茶树miRNA序列的基础上,对本试验室克隆得到的茶树3个DHD/SDH进行miRNA预测和鉴定. 获得了4个miRNA参与裂解CsDHD/SDH基因. 其中miR5180b、miR1510b-5p和miR24共同靶向CsDHD/SDH2,miR868-5p作用于CsDHD/SDH3. 同时对茶树中3个CsDHD/SDH表达模式进行检测. 不同激素处理下,CsDHD/SDH2和CsDHD/SDH3表达模式一致. CsDHD/SDH2和CsDHD/SDH3的表达模式存在协同作用. 本研究表明CsDHD/SDH1与CsDHD/SDH2和CsDHD/SDH3之间的表达存在负反馈调节,CsDHD/SDH1上调表达时会导致互补基因CsDHD/SDH2和CsDHD/SDH3下调表达. (图4 表2 参25)
Abstract:
3-Dehydroquinic acid dehydrase/shikimate dehydrogenase (DHD/SDH) is the only bifunctional enzyme in the shikimic acid pathway. It can catalyze the generation of shikimic acid and gallic acid. To investigate the expression and regulation patterns of DHD/SDH in tea, we aimed to determine (1) the miRNA-mediated cleavage of DHD/SDH involved in the shikimic acid pathway, (2) the expression pattern of miRNA and their targets, and (3) the expression pattern of three DHD/SDH genes in tea plant (Camellia sinensis) with different hormone treatments via online prediction, RLM-RACE, and qPCR. Based on the miRNAs obtained, we identified four miRNAs that regulated CsDHD/SDH in tea. CsDHD/SDH2 was targeted by miR5180b, miR1510b-5p, and miR24; CsDHD/SDH3 was targeted by miR868-5p. We also found that CsDHD/SDH2 and CsDHD/SDH3 have a similar expression pattern under different hormone treatments, and they were synergistic with each other. CsDHD/SDH1 exhibited an expression pattern opposite to that of the other two homologues, and increased expression of CsDHD/SDH1 reduced the expression of the other two genes.

参考文献/References:

1 Maeda H, Dudareva N. The shikimate pathway and aromatic amino acid biosynthesis in plants [J]. Annu Rev Plant Biol, 2012, 63 (1): 73-105
2 Muir RM, Ibá?ez AM, Uratsu SL, Ingham ES, Leslie CA, McGranahan GH, Batra N, Goyal S, Joseph J, Jemmis ED, Dandekar AM. Mechanism of gallic acid biosynthesis in bacteria (Escherichia coli) and walnut (Juglans regia) [J]. Plant Molec Biol, 2011, 75 (6): 555-565
3 Gross GG. Biosynthesis of hydrolyzable tannins [J]. Comprehensive Nat Prod Chem, 1999: 799-826
4 Dewick PM, Haslam E. Phenol biosynthesis in higher plants. Gallic acid [J]. Biochem J, 1969, 113 (3): 537
5 Werner I, Bacher A, Eisenreich W. Retrobiosynthetic NMR studies with 13C-labeled glucose. Formation of gallic acid in plants and fungi [J]. J Biol Chem, 1997, 272 (41): 25474-25482
6 Schwarz C. Biosynthesis of gallic acid in Rhus typhina: discrimination between alternative pathways from natural oxygen isotope abundance [J]. Phytochemistry, 2004, 65 (20): 2809-2813
7 Ossipov V, Salminen J P, Ossipova S, Pihlaja K. Gallic acid and hydrolysable tannins are formed in birch leaves from an intermediate compound of the shikimate pathway [J]. Biochem Syst Ecol, 2003, 31(1): 3-16
8 Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor [J]. Molec Cell, 2000, 5 (4): 659-669
9 Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans [J]. Cell, 1993, 75 (5): 855-862
10 Lim LP, Bartel DP. Vertebrate microRNA genes [J]. Science, 2003, 299 (5612): 501
11 章文蔚, 罗玉萍, 李思光. microRNA及其在植物生长发育中的作用[J]. 植物生理学报, 2006, 42 (6): 1015-1020 [Zhang WW, Luo YP, Li SG. microRNA and its role in plant growth and development [J]. Plant Physiol Commun, 2006, 42 (6): 1015-1020]
12 王磊, 范云六. 植物微小RNA(microRNA)研究进展[J]. 中国农业科技导报, 2007, 9 (3): 18-23 [Wang L, Fan YL. Progress of microRNA in plants [J]. J Agric Aci Technol, 2007, 9 (3): 18-23
13 许振华, 谢传晓. 植物microRNA与逆境响应研究进展[J]. 遗传, 2010, 32 (10): 1018-1030 [Xu ZH, Xie CX. Advances in plant microRNA and stresses response [J]. Hereditas, 2010, 32 (10): 1018-1030]
14 丁艳菲, 朱诚, 王珊珊, 刘海丽. 植物microRNA对重金属胁迫响应的调控[J]. 生物化学与生物物理进展, 2011, 38 (12): 1106-1110 [Ding YF, Zhu C, Wang SS, Liu HL. Regulation of plant microRNA in response to heavy metal stress [J]. Progr Biochem Biophys, 2011, 38 (12): 1106-1110].
15 宋长年. 枳和柑橘microRNA及其靶基因的识别、鉴定与表达分析[D]. 南京: 南京农业大学, 2011 [Song CN. Identification and expression of poncirus trifoliata and citrus microRNAs and their targets [D]. Nanjing: Nanjing Agricultural University, 2011]
16 Lin J, Zheng J, Chen R, Chen C. Screening specific tea plant germplasm resources (Camellia sinensis) with high EGCG content [J]. Acta Agron Sin, 2005, 31 (11): 1511-1517
17 林玉玲.龙眼体胚发生过程中SOD基因家族的克隆及表达调控研究[D]. 福州: 福建农林大学, 2011 [Lin Y. Studies on cloning, expression and regulation of SOD gene family during somatic embryogenesis in Dimocarpus longan [D]. Fuzhou: Fujian Agriculture and Forestry University, 2011]
18 Li D, Hofius D, Hajirezaei MR, Fernie AR, B?rnke F, Sonnewald U. Functional analysis of the essential bifunctional tobacco enzyme 3-dehydroquinate dehydratase/shikimate dehydrogenase in transgenic tobacco plants [J]. J Exp Bot, 2007, 58 (8): 2053-2067
19 Singh SA, Christendat D. Structure of Arabidopsis dehydroquinate dehydratase-shikimate dehydrogenase and implications for metabolic channeling in the shikimate pathway [J]. Biochemistry, 2006, 45 (25): 7787-7796
20 Singh S, Korolev S, Koroleva O, Zarembinski T, Collart F, Joachimiak A, Christendat D. Crystal structure of a novel shikimate dehydrogenase from Haemophilus influenzae [J]. J Biol Chem, 2005, 280 (17): 17101-17108
21 Liu H, Tian X, Yj, Wu C, Zheng C. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana [J]. RNA, 2008, 14 (5): 836-843
22 Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, Jin Y. Members of miR-169 amily are induced by high salinity and transiently inhibit the NF-YA transcription factor [J]. BMC Molec Biol, 2009, 10 (1): 29
23 Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis [J]. Plant Cell, 2004, 16 (8): 2001-2019
24 Rippert P, Scimemi C, Dubald M, Matringe M. Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance [J]. Plant Physiol, 2004, 134 (1): 92-100
25 Rivero RM, Ruiz JM, Garc??A PC, López-Lefebre LR, Sánchez E, Romero L. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants [J]. Plant Sci, 2001, 160 (2): 315

相似文献/References:

[1]黄安平,韩宝瑜,包小村.茶刺蛾危害后茶树挥发性有机化合物释放变化[J].应用与环境生物学报,2011,17(06):819.[doi:10.3724/SP.J.1145.2011.00819]
 HUANG Anping,HAN Baoyu,BAO Xiaocun.Change in Volatile Organic Compounds from Camellia sinensis (L.) O. Kuntze Damaged by Iragoides fasciata Moore (Lepidoptera: Eucleidae)[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):819.[doi:10.3724/SP.J.1145.2011.00819]
[2]王海斌** 叶江华 陈晓婷 贾小丽 孔祥海.连作茶树根际土壤酸度对土壤微生物的影响[J].应用与环境生物学报,2016,22(03):480.[doi:10.3724/SP.J.1145.2015.09019]
 WANG Haibin**,YE Jianghua,CHEN Xiaoting,et al.Effect on soil microbes of the rhizospheric soil acidity of tea tree continuous cropping*[J].Chinese Journal of Applied & Environmental Biology,2016,22(02):480.[doi:10.3724/SP.J.1145.2015.09019]
[3]王海斌,陈晓婷,丁力,等.不同树龄茶树根际土壤细菌多样性的T-RFLP分析[J].应用与环境生物学报,2018,24(04):775.[doi:10.19675/j.cnki.1006-687x.2017.10003]
 WANG Haibin,**,CHEN Xiaoting,et al.Using T-RFLP technology to analyze bacterial diversity in the rhizospheric soils of tea tree at different ages[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):775.[doi:10.19675/j.cnki.1006-687x.2017.10003]
[4]郭玉琼,黄道斌,常笑君,等.铁观音茶树体胚发生及其内源激素变化[J].应用与环境生物学报,2018,24(04):824.[doi:10.19675/j.cnki.1006-687x.2017.12027]
 GUO Yuqiong,HUANG Daobin,CHANG Xiaojun,et al.Somatic embryogenesis and the changes of endogenous hormones in Camellia sinensis ‘Tieguanyin’[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):824.[doi:10.19675/j.cnki.1006-687x.2017.12027]
[5]郭玉琼,王仲,朱晨,等.茶树CSD1基因及其启动子克隆与低温胁迫下的表达[J].应用与环境生物学报,2018,24(05):1122.[doi:10.19675/j.cnki.1006-687x.2018.02021]
 GUO Yuqiong,WANG Zhong,ZHU Chen,et al.Cloning and expression of the copper/zinc-superoxide dismutase 1 gene and its promoter under low temperature stress in Camellia sinensis[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):1122.[doi:10.19675/j.cnki.1006-687x.2018.02021]
[6]王海斌,**陈晓婷丁 力叶江华贾小丽孔祥海何海斌.福建省安溪县茶园土壤酸化对茶树产量及品质的影响*[J].应用与环境生物学报,2018,24(06):1.[doi:10.19675/j.cnki.1006-687x.2017.12008]
 WANG Haibin,**,CHEN Xiaoting,et al.Effect of soil acidification on yield and quality of tea tree in tea plantations from Anxi county, Fujian province *[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):1.[doi:10.19675/j.cnki.1006-687x.2017.12008]
[7]张 玥 胡雲飞 王树茂 柯子星 高水练 林金科**.茶园年限对根际土壤真菌群落结构及多样性的影响*[J].应用与环境生物学报,2018,24(06):1.[doi:10.19675/j.cnki.1006-687x.2018.04011]
 ZHANG Yue,HU Yunfei,WANG Shumao,et al.Effect of the structure and diversity of fungal community in rhizosphere soil from different ages of tea garden *[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):1.[doi:10.19675/j.cnki.1006-687x.2018.04011]

更新日期/Last Update: 2018-04-25