|本期目录/Table of Contents|

[1]廖丹,黄华斌,庄峙厦,等.互花米草入侵对红树秋茄根际与根内细菌群落结构与多样性的影响[J].应用与环境生物学报,2018,24(02):269-275.[doi:10.19675/j.cnki.1006-687x.2017.04032]
 LIAO Dan,HUANG Huabin,ZHUANG Shixia,et al.Effects of exotic Spartina alterniflora on rhizosphere and endophytic bacterial community structures and diversity in roots of native mangroves[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):269-275.[doi:10.19675/j.cnki.1006-687x.2017.04032]
点击复制

互花米草入侵对红树秋茄根际与根内细菌群落结构与多样性的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年02期
页码:
269-275
栏目:
研究论文
出版日期:
2018-04-25

文章信息/Info

Title:
Effects of exotic Spartina alterniflora on rhizosphere and endophytic bacterial community structures and diversity in roots of native mangroves
作者:
廖丹黄华斌庄峙厦洪有为
1厦门华厦学院检验科学与技术系 厦门 361024 2中国科学院城市环境研究所城市环境与健康重点实验室 厦门 361021
Author(s):
LIAO Dan HUANG Huabin ZHUANG Shixia HONG Youwei
1 Department of Science and Technology for Inspection of Xiamen Huaxia University, Xiamen 361024, China 2 Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
关键词:
入侵机制内生细菌根际细菌群落结构互花米草红树植物Illumina测序
Keywords:
invasive mechanism endophytic bacteria rhizoplane bacteria community structure Spartina alterniflora mangrove Illumina amplicon sequencing
分类号:
Q938.122.3
DOI:
10.19675/j.cnki.1006-687x.2017.04032
摘要:
根际/根内微生物在湿地生态系统碳、氮、硫循环中发挥着重要作用,也是外来植物入侵机制研究的重要组成部分. 选取福建九龙江口南岸互花米草纯林、秋茄纯林及互花米草和秋茄混交林等生境,采用Illumina高通量测序技术分析植物根内、根表及根际沉积物中细菌群落组成. 结果显示:互花米草纯林根际细菌的多样性指数明显高于混交林和秋茄纯林;UniFrac主成分分析(PCA)结果表明不同生境各细菌群落组成存在显著性差异;两类植物根表细菌以变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、绿弯菌门(Chloroflexi)和厚壁菌门(Firmicutes)为主,其中互花米草纯林中各类细菌占比分别为78.0%、5.6%、3.3%和1.6%;根内以蓝细菌(Cyanobacteria)和变形菌门等为主. 线性判别分析(LDA)结果表明植物根内和根表存在大量与碳、氮、硫循环相关的功能微生物,如假交替单胞菌科(Pseudoalteromonadaceae)、弧菌科(Vibrionaceae)、嗜甲基菌科(Methylophilaceae)和脱硫弧菌属(Desulfovibrio)等. 本研究表明与根际微生物相比,根内细菌群落对植物入侵造成的环境变化更加敏感,结果可为深入研究互花米草入侵机制提供重要科学依据. (图5 表2 参36)
Abstract:
Root-associated microbial communities are very important for biogeochemical cycles of carbon, nitrogen, and sulfur in wetland ecosystems, and help to enhance the mechanisms of plant invasions. In the estuary of Jiulong River (China), Spartina alterniflora has widely invaded Kandelia obovata-dominated habitats, making it necessary to investigate the influence of root-associated bacteria. The endophytic and rhizosphere bacterial community structures associated with selected plant species were investigated using the barcoded Illumina paired-end sequencing technique. The diversity indices of bacteria associated with the roots of S. alterniflora were higher than those of the transition stands and K. obovata monoculture. Using principal coordinate analysis with UniFrac metrics, the comparison of diversity showed that all samples could be significantly clustered into three major groups, according to the bacterial communities of origin. Four phyla, namely, Proteobacteria, Bacteroidetes, Chloroflexi, and Firmicutes, were abundant in the rhizoplane of the two salt marsh plants, whereas Cyanobacteria and Proteobacteria were the more abundant endophytic bacteria. Proteobacteria, Bacteroidetes, Chloroflexi, and Firmicutes in the rhizosphere bacteria of S. alterniflora accounted for 78.0%, 5.6%, 3.3%, and 1.6%, respectively. Members of the phyla Spirochaetes and Chloroflexi were found among the endophytic bacteria of S. alterniflora and K. obovata, respectively. Using linear discriminate analysis, we found some dominant rhizoplane and endophytic bacteria, including Pseudoalteromonadaceae, Vibrionaceae, Methylophilaceae, and Desulfovibrio, which could potentially affect the carbon, nitrogen, and sulfur cycles. Of interest was that endophytic bacteria were more sensitive to plant invasion than rhizosphere bacteria. Thus, the results provide evidence for the isolation of functional bacteria and the effects of root-associated microbial groups on S. alterniflora invasions.

参考文献/References:

1. Mcleod E, Chmura GL, Bouillon S, Salm R, Bjork M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 [J]. Front Ecol Environ, 2011, 9 (10): 552-560
2. Hensel MJS, Silliman BR. Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem [J]. PNAS, 2013,110 (51): 20621-20626
3. Alongi DM. Carbon cycling and storage in mangrove forests [J]. Annu Rev Mar Sci, 2014, 6: 195-219
4. Williams SL, Grosholz ED. The invasive species challenge in estuarine and coastal environments: marrying management and science [J]. Estuar Coast, 2008, 31 (1): 3-20
5. 刘银银, 李峰, 孙庆业, 谢永宏. 湿地生态系统土壤微生物研究进展[J]. 应用与环境生物学报, 2013, 19 (3): 547-552 [Liu YY, Li F, Sun QY, Xie YH Review on the study of soil microorganisms in wetland ecosystems [J]. Chin J Appl Environ Biol, 2013, 19 (3): 547-552]
6. 王刚, 杨文斌, 王国祥, 刘金娥, 杭子清.互花米草海向入侵对土壤有机碳组分、来源和分布的影响[J]. 生态学报, 2013, 33 (8): 2474-2483 [Wang G,Yang WB,Wang GX,Liu JE,Hang ZQ. The effects of Spartina alterniflora seaward invasion on soil organic carbon fractions,sources and distribution [J]. Acta Ecol Sin, 2013, 33 (8): 2474-2483]
7. Zeleke J, Sheng Q, Wang JG, Huang MY, Xia F, Wu JH, Quan ZX. Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments [J]. Front Microbiol, 2013, 4: 170-241
8. Lau JA, Lennon JT. Rapid responses of soil microorganisms improve plant fitness in novel environments [J]. PNAS, 2012, 109 (35): 14058-14062
9. Badri DV, Weir TL, van der LD, Vivanco JM. Rhizosphere chemical dialogues: plant-microbe interactions [J]. Curr Opin Biotechnol, 2009, 20 (6): 642-650
10. Weyens N, van der LD, Taghavi S, and Vangronsveld J. Phytoremediation: plant-endophyte partnerships take the challenge phytoremediation: plant-endophyte partnerships take the challenge [J]. Curr Opin Biotechnol, 2009, 20 (2): 248-254
11. Zhang Y, Huang G, Wang W, Chen L, Lin G. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China [J]. Ecology, 2012, 93 (3): 588-597
12. Nie M, Gao LX, Yan JH, Fu XH, Xiao M, Yang J, and Li B. Population variation of invasive Spartina alterniflora can differentiate bacterial diversity in its rhizosphere [J]. Plant Ecol, 2010, 209 (2): 219-226
13. Theron J, Cloete TE. Molecular techniques for determining microbial diversity and community structure in natural environments [J]. Crit Rev Microbiol, 2000, 26 (1): 37-57
14. Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW. Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques [J]. Curr Opin Biotechnol, 2014, 27: 55-64
15. 李虎, 廖丹, 苏建强, 黄福义, 洪有为. 外来种互花米草根内细菌多样性及功能[J]. 应用与环境生物学报, 2014, 20 (5): 856-862 [Li H, Liao D, Su JQ, Huang FY, Hong YW. Diversity and function of endophytic bacteria in roots of exotic plant Spartina alterniflra [J]. Chin J Appl Environ Biol, 2014, 20 (5): 856-862]
16. Degnan PH, Ochman H. Illumina-based analysis of microbial community diversity [J]. ISME J, 2012, 6 (1): 183-194
17. 洪有为. 典型多环芳烃在红树林湿地模拟系统中的迁移规律及其毒性效应研究[D]. 厦门: 厦门大学, 2009 [Hong YW. Study on transportatron and toxic effects of typical PAHs in mangrove wetland simulation system [D]. Xiamen: Xiamen University, 2009]
18. 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2013 [Bao SD. Soil Agricultural Chemistry Analysis [M]. Beijing: China Agriculture Press, 2013]
19. Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM. Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates [J]. App Environ Microbiol, 2007, 73 (22): 7259-7267
20. Hong YW, Liao D, Chen JS, Khan S, Su JQ, Li H. A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant-microbe interactions in phytoremediation [J]. Environ Sci Pollut Res, 2015, 22 (9): 7071-7081
21. Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing [J]. PLOS Genet, 2008, 4 (11): 1-11
22. Zhou HW, Li DF, Tam NFY, Jiang XT, Zhang H, Sheng HF, Qin J, Liu X, Zou F. BIPES, a cost-effective high-throughput method for assessing microbial diversity [J]. ISME J, 2011, 5 (4): 741-749
23. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data [J]. Nat Methods, 2010, 7 (5): 335-336
24. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS,Huttenhower C. Metagenomic biomarker discovery and explanation [J]. Gen Biol, 2011, 12 (6): 1-18
25. Blumenthal D, Mitchell CE, Pysek P, Jarosík V. Synergy between pathogen release and resource availability in plant invasion [J]. PNAS, 2009, 106 (19): 7899-904
26. Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere [J]. FEMS Microb Ecol, 2009, 68 (1): 1-13
27. Jiang XT, Peng X, Deng GH, Sheng HF, Wang Y, Zhou HW, Tam NFY. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland [J]. Microb Ecol, 2013, 66 (1): 96-104
28. Liao CZ, Luo YQ, Jiang LF, Zhou XH, Wu XW, Fang CM, Chen JK, Li B. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China [J]. Ecosystems, 2007, 10 (8): 1351-1361
29. Ringelberg D, Foley K, Reynolds CM. Bacterial endophyte communities of two wheatgrass varieties following propagation in different growing media [J]. Can J Microbiol, 2012, 58 (1): 67-80
30. Fuernkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica [J]. ISME J, 2008, 2 (5): 561-570
31. Miyamoto T, Kawahara M, Minamisawa K. Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis [J]. Appl Environ Microbiol, 2004, 70 (11): 6580-6586
32. Flores-Mireles AL, Winans SC, Holguin G. Molecular characterization of diazotrophic and denitrifying bacteria associated with mangrove roots [J]. App Environ Microbiol, 2007, 73 (22): 7308-7321
33. Moore FP, Barac T, Borrernans B, Oeyen L, Vangronsveld J, van der LD, Campbell CD, Moore ERB. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoreniediation [J]. Syst Appl Microbiol, 2006, 29 (7): 539-556
34. Muyzer G, Stams AJM. The ecology and biotechnology of sulphate-reducing bacteria [J]. Nat Rev Microbiol, 2008, 6 (6): 441-454
35. Vladar P, Rusznyak A, Marialigeti K, Borsodi AK. Diversity of sulfate-reducing bacteria inhabiting the rhizosphere of Phragmites australis in lake velencei (Hungary) revealed by a combined cultivation-based and molecular approach [J]. Microb Ecol, 2008, 56 (1): 64-75
36. Basso O, Caumette P, Magot M. Desultovibrio putealis sp nov., a novel sulfate-reducing bacterium isolated from a deep subsurface aquifer [J]. Int J Syst Evol Microbiol, 2005, 55: 101-104
37.

相似文献/References:

[1]何锦峰.外来植物入侵机制研究进展与展望[J].应用与环境生物学报,2008,14(06):863.[doi:10.3724/SP.J.1145.2008.00863]
 HE Jinfeng.Advance in Studies on Invasion Mechanisms of Exotic Plants[J].Chinese Journal of Applied & Environmental Biology,2008,14(02):863.[doi:10.3724/SP.J.1145.2008.00863]
[2]雍彬,张超,马沁沁,等.华重楼内生菌Iun35的分离及其抗菌蛋白的性质[J].应用与环境生物学报,2011,17(04):537.[doi:10.3724/SP.J.1145.2011.00537]
 YONG Bin,ZHANG Chao,MA Qinqin,et al.Isolation of Endophytic Bacterium Iun35 from Paris polyphylla var. chinensis and Properties of Its Antibiotic Protein[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):537.[doi:10.3724/SP.J.1145.2011.00537]
[3]宋培勇,李林,肖仲久,等.4株桫椤内生细菌的分离鉴定及系统发育分析[J].应用与环境生物学报,2013,19(03):528.[doi:10.3724/SP.J.1145.2013.00528]
 SONG Peiyong,LI Lin,XIAO Zhongjiu,et al.Identification and Phylogenetic Analysis of Four Endophytic Bacteria Isolated from Alsophila spinulosa[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):528.[doi:10.3724/SP.J.1145.2013.00528]
[4]李虎,廖丹,苏建强,等.外来种互花米草根内细菌多样性及功能[J].应用与环境生物学报,2014,20(05):856.[doi:10.3724/SP.J.1145.2014.03027]
 LI Hu,LIAO Dan,SU Jianqiang,et al. Diversity and function of endophytic bacteria in roots of exotic plant Spartina alterniflora[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):856.[doi:10.3724/SP.J.1145.2014.03027]
[5]廖萍,刘茂柯,张瀚能,等.铬污染区糙野青茅内生耐铬细菌筛选及其促生能力[J].应用与环境生物学报,2015,21(06):1025.[doi:10.3724/SP.J.1145.2015.07008]
 LIAO Ping,LIU Maoke,ZHANG Hanneng,et al.Chromium-resistant endophytic bacteria from Deyeuxia scabrescens (Griseb.) in Chromium contaminated area: isolation, screening and plant growth promoting[J].Chinese Journal of Applied & Environmental Biology,2015,21(02):1025.[doi:10.3724/SP.J.1145.2015.07008]
[6]钟宇舟,余秀梅,陈强,等.四川盆地大豆根瘤内生细菌的分离鉴定及促生效果[J].应用与环境生物学报,2017,23(01):46.[doi:10.3724/SP.J.1145.2016.03002]
 ZHONG Yuzhou,YU Xiumei,CHEN Qiang**,et al.Isolation, identification and plant growth promotion ability evaluation of the endophytic bacteria isolated from soybean root nodule in Sichuan Basin[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):46.[doi:10.3724/SP.J.1145.2016.03002]
[7]麻扬,胡素静,王潇,等.短叶对齿藓可培养内生细菌的分离及其发酵产物对宿主植物的影响[J].应用与环境生物学报,2017,23(06):1028.[doi:10.3724/SP.J.1145.2017.01005]
 MA Yang,HU Sujing,WANG Xiao,et al.Isolation of cultivable endophytic bacteria from Didymodon tectorum and effects of extracts from strain fermentation broths on host plant growth[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):1028.[doi:10.3724/SP.J.1145.2017.01005]
[8]郜晨,黄淑芬,胡莉,等.尼瓦拉野生稻内生菌多样性和促生作用[J].应用与环境生物学报,2018,24(01):33.[doi:10.19675/j.cnki.1006-687x.2017.04029]
 GAO Chen,HUANG Shufen,HU Li,et al.Diversity and plant growth promotion of endophytic bacteria isolated from $Oryza nivara$[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):33.[doi:10.19675/j.cnki.1006-687x.2017.04029]
[9]郝莎莎 卫旭芳 侯智霞** 李守科.文冠果根系瘤状物可培养内生细菌的特性*[J].应用与环境生物学报,2018,24(05):1.[doi:10.3724/SP.J.1145.2018.01016]
 HAO Shasha,WEI Xufang,HOU Zhixia**,et al.Characteristics analysis of culturable endophytic bacteria of Xanthoceras sorbifolia Bunge with tumor root*[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):1.[doi:10.3724/SP.J.1145.2018.01016]

更新日期/Last Update: 2018-04-25