|本期目录/Table of Contents|

 XIANG Yuanying,YANG Nuan,et al.Enhanced methane production from SCFAs wastewater using single-chamber microbial electrolysis cell*[J].Chinese Journal of Applied & Environmental Biology,2016,22(05):872-877.[doi:10.3724/SP.J.1145.2015.12009]





Enhanced methane production from SCFAs wastewater using single-chamber microbial electrolysis cell*
1中国科学院成都生物研究所 成都 610064 2中国科学院大学 北京 100049 3四川大学生命科学学院 成都 610041
XIANG Yuanying1 2 YANG Nuan1 2 SUN Xia3 ZHANG Lei1 2 LI Daping1** & LIANG Cheng1 2
1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3School of Life Sciences, Sichuan University, Chengdu 610041, China
single-chamber microbial electrolysis cell mixed short-chain fatty acids methane production applied voltage anaerobic digestion
X703 : X172
传统厌氧消化基质转化慢,甲烷产率和能量回收效率较低. 本研究模拟厌氧酸化产生的短链脂肪酸(SCFAs)废水,在批式条件下,利用单室无膜微生物电解池辅助厌氧消化(MEC-AD)产甲烷,考察不同外加电压(0.4 V、0.6 V、0.8 V)对底物降解、甲烷产生和能量回收效率的影响. 结果表明,进水化学需氧量(COD)浓度约为7 000 mg/L时,COD的平均去除负荷由AD的(3.34 ± 0.09)kg m-3 d-1提高到MEC-AD的(6.86 ± 0.04)kg m-3 d-1(外加0.8 V),增加了1.06倍. 外加电压与脂肪酸组分的降解呈正相关,即随着外加电压的升高,底物各SCFA降解速率加快,此时相应的甲烷含量、产量明显提高. 当外加电压为0.8 V时,混合脂肪酸中乙酸、丙酸及丁酸的降解速度较AD分别提高了98.25%、107.14%、54.21%,甲烷的含量达90.11%;甲烷的产率为2.63 L L-1 d-1,较AD提高了157.84%. 以基质化学能、电能和产生的甲烷来计算总能量回收效率,其中AD为73.51%;加电0.4 V、0.6 V、0.8 V时分别为93.44%、88.99%、93.41%. 综合脂肪酸降解、甲烷产生及能量回收情况,确定外加0.8 V为最优条件. 循环伏安扫描分析发现,与AD相比,MEC-AD在-0.3 V处存在明显产甲烷还原峰. 高通量测序结果显示,MEC-AD中阳极优势菌群为Methanosaeta sp.和Geobacter sp.,其相对丰度比分别为36.43%和13.35%;而AD中相应比例仅为24.46%和0.99%. 由此可知MEC-AD中可能存在直接的种间电子传递(DIET)产甲烷途径,该途径是甲烷含量和产量提升的重要原因. 综上,以微生物电解池辅助厌氧消化能有效促进底物降解,且获得高纯度、高产量的甲烷,具有良好的应用前景. (图4 表1 参28)
This study aimed to accelerate substrate transformation and improve the production rate and energy recovery rate of methane. We used a single-chamber microbial electrolysis cell (MEC-AD) with stainless steel cathode to treat the artificial short-chain fatty acids (SCFAs) wastewater for methane production. The effects of external applied voltage (0.4 V, 0.6 V, 0.8 V) on substrates degradation, methane production and energy recovery efficiency were studied by comparing with the traditional anaerobic digestor (AD). The results showed that MEC-AD could effectively promote substrates degradation and methane generation. When the influent COD concentration was about 7000mg·L-1, the average organic matter removal load (ORL) was increased from 3.34 ± 0.09 kg m-3 d-1 of AD to 6.86 ± 0.04 kg m-3 d-1 of MEC-AD (applied 0.8 V). It was found that the degradation rate of each SCFA, methane content and production were obviously increased with the applied voltage. Especially under the applied voltage of 0.8 V, the degradation rate of acetate, propionate and butyrate increased by 98.25%, 107.14% and 54.21% respectively; the methane content was up to 90.11%; and the methane production rate was 2.63 L L-1 d-1, which was 157.84% higher than AD. Moreover, the total energy recovery efficiency was 73.51% (AD), 93.44% (0.4 V), 88.99% (0.6 V) and 93.41% (0.8 V) respectively. Considering the degradation of SCFAs, methane production and energy recovery efficiency, the optimal condition in this work was under 0.8 V. Further cyclic voltammetry analysis exhibited a reduction peak at -0.3 V in MEC-AD, which represented a characteristic peak of methanogenesis. High-throughput sequencing analysis revealed that the anodic dominant population was Methanosaeta sp. and Geobacter sp. in MEC-AD, with relative abundance of 36.43% and 13.35% respectively. In AD, the corresponding proportion was only 24.46% and 0.99%. It might be deduced that there is a direct interspecies electron transfer (DIET) pathway in MEC-AD, which could greatly improve methane content and production. MEC-AD can effectively enhance substrates degradation and obtain high purity and high production of methane, which has good?application?prospects.


1 Ghasemi M, Daud WRW, Hassan SHA, Oh SE, Ismail M, Rahimnejad M, Jahim JM. Nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review [J]. J Alloy Compd, 2013, 580: 245-255 2 Saxena RC, Adhikari DK, Goyal HB. Biomass-based energy fuel through biochemical routes: a review [J]. Renew Sust Energ Rev, 2009, 13 (1): 167-178 3 Monlau F, Sambusiti C, Ficara E, Aboulkas A, Barakat A, Carrere H. New opportunities for agricultural digestate valorization: current situation and perspectives [J]. Energy Environ Sci, 2015, 8 (9): 2600-2621 4 Tang YQ, Shigematsu T, Morimura S, Kida K. Dynamics of the microbial community during continuous methane fermentation in continuously stirred tank reactors [J]. J Biosci Bioeng, 2015, 119 (4): 375-383 5 赵杰红, 张波, 蔡伟民. 厌氧消化系统中丙酸积累及控制研究进展[J]. 中国给水排水, 2005, 21 (3): 25-27 [Zhao JH, Zhang B, Cai WM. Research progress on propionic acid accumulation and control in anaerobic digestion system [J]. Chin Water Waste, 2005, 21(3): 25-27] 6 杨彦飞, 杨暖, 薄涛, 李大平, 尹琦, 向元英. 连续流微生物电解池处理有机废水同步生产甲烷[J]. 应用与环境生物学报, 2015, 21 (5): 854-859 [Yang YF, Yang N, Bo tao, Li DP, Yin Q, Xiang YY. Organic?wastewater?treatment?and?methane?production?in?a continuous-flow?microbial?electrolysis?cell [J]. Chin J Appl Environ Biol, 2015, 21 (5): 854-859 ] 7 Wagner RC, Regan JM, Oh SE, Zuo Y, Logan BE. Hydrogen and methane production from swine wastewater using microbial electrolysis cells [J]. Water Res, 2009, 43 (5): 1480-1488 8 Bo T, Zhu XY, Zhang LX, Tao Y, He XH, Li DP, Yan ZY. A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor [J]. Electrochem Commun, 2014, 45: 67-70 9 Escapa A, Lobato A, García DM, Morán A. Hydrogen production and COD elimination rate in a continuous microbial electrolysis cell: The influence of hydraulic retention time and applied voltage [J]. Environ Prog Sustain, 2013, 32 (2): 263-268 10 Cheng S, Logan BE. Sustainable and efficient biohydrogen production via electrohydrogenesis [J].PNAS, 2007, 104 (47): 18871-18873 11 Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture [J]. Bioresour Technol, 2010, 101 (9): 3085-3090 12 Villano M, Monaco G, Aulenta F, Majone M. Electrochemically assisted methane production in a biofilm reactor [J]. J Power Sources, 2011, 196 (22): 9467-9472 13 李建, 占国强, 王娟, 高平, 李大平. 生物电解池氨氧化脱氮产能[J]. 应用与环境生物学报, 2014, 20 (6): 1058-1062 [Li J, Zhan GQ, Wang J, Gao P, Li DP. Simultaneous production of energy from ammoxidation in microbial electrolysis cells [J]. Chin J Appl Environ Biol, 2014, 20 (6): 1058-1062] 14 Hamelers HVM, Ter Heijne A, Sleutels T, Jeremiasse AW, Strik D, Buisman CJN. New applications and performance of bioelectrochemical systems [J]. Appl Microbiol Biotechnol, 2010, 85 (6): 1673-1685 15 Cheng SA, Xing DF, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis [J]. Environ Sci Technol, 2009, 43 (10): 3953-3958 16 Clauwaert P, Verstraete W. Methanogenesis in membraneless microbial electrolysis cells [J]. Appl Microbiol Biotechnol, 2009, 82 (5): 829-836 17 Zhao ZQ, Zhang YB, Wang LY, Quan X. Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion [J]. Sci Rep, 2015, 5: 12 18 Logan BE, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies [J]. Science, 2012, 337 (6095): 686-690 19 Selembo PA, Merrill MD, Logan BE. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells [J]. J Power Sources, 2009, 190 (2): 271-278 20 Zhang YM, Merrill MD, Logan BE. The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells [J]. Int J Hydrogen Energ, 2010, 35 (21): 12020-12028 21 Wu D, Pan YZ, Huang LP, Zhou P, Quan X, Chen HB. Complete separation of Cu(II), Co(II) and Li(I) using self-driven MFCs-MECs with stainless steel mesh cathodes under continuous flow conditions [J]. Sep Purif Technol, 2015, 147: 114-124 22 Su WT, Zhang LX, Li DP, Zhan GQ, Qian JW, Tao Y. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor [J]. Biotechnol and Bioeng, 2012, 109 (11): 2904-2910 23 Zhao HZ, Zhang Y, Chang YY, Li ZS. Conversion of a substrate carbon source to formic acid for carbon dioxide emission reduction utilizing series-stacked microbial fuel cells [J]. J Power Sources, 2012, 217: 59-64 24 Call D, Logan BE. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane [J]. Environ Sci Technol, 2008, 42 (9): 3401-3406 25 Ran Z, Gefu Z, Kumar JA, Chaoxiang L, Xu H, Lin L. Hydrogen and methane production in a bio-electrochemical system assisted anaerobic baffled reactor [J]. Int J Hydrogen Energ, 2014, 39 (25): 13498-13504 26 Wang AJ, Liu WZ, Cheng SA, Xing DF, Zhou JH, Logan BE. Source of methane and methods to control its formation in single chamber microbial electrolysis cells [J]. Int J Hydrogen Energ, 2009, 34 (9): 3653-3658 27 Rotaru AE, Shrestha PM, Liu FH, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Lovley DR. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane [J]. Energy Environ Sci, 2014, 7 (1): 408-415 28 Yin Q, Zhu XY, Zhan GQ, Bo T, Yang YF, Tao Y, He XH, Li DP, Yan ZY. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina [J]. J Environ Sci, 2015, DOI: 10.1016/j.jes.2015.07.006


 WU Tingting,YANG Nuan,et al.Simultaneous yellow water treatment and methane production using stainless steel single-chamber microbial electrolysis cell[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):907.[doi:10.3724/SP.J.1145.2016.10012]

更新日期/Last Update: 2016-10-25