|本期目录/Table of Contents|

[1]肖新换,黄珑,黄宁,等.甘蔗ScBAK1基因及其可变剪接体的克隆与表达分析[J].应用与环境生物学报,2015,21(05):872-881.[doi:10.3724/SP.J.1145.2015.03005]
 XIAO Xinhuan,HUANG Long,HUANG Ning,et al.Cloning and expression analysis of ScBAK1 gene and its alternative spliceosome in sugarcane[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):872-881.[doi:10.3724/SP.J.1145.2015.03005]
点击复制

甘蔗ScBAK1基因及其可变剪接体的克隆与表达分析()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年05期
页码:
872-881
栏目:
研究论文
出版日期:
2015-10-25

文章信息/Info

Title:
Cloning and expression analysis of ScBAK1 gene and its alternative spliceosome in sugarcane
作者:
肖新换 黄珑 黄宁 张玉叶 凌辉 刘峰 苏炜华 阙友雄
福建农林大学农业部福建甘蔗生物学与遗传育种重点实验室 福州 350002
Author(s):
XIAO Xinhuan HUANG Long HUANG Ning ZHANG Yuye LING Hui LIU Feng SU Weihua QUE Youxiong
Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
关键词:
甘蔗BAK1基因可变剪接生物信息学荧光定量PCR
Keywords:
sugarcane BAK1 gene alternative splicing bioinformatics RT-qPCR
分类号:
Q78 : S566.103.4
DOI:
10.3724/SP.J.1145.2015.03005
文献标志码:
A
摘要:
可变剪接(Alternative splicing,AS)是真核生物基因表达调控研究的热点. BAK1(Brassinosteroid insensitive1-associated receptor kinase 1)是植物中丝氨酸/苏氨酸蛋白激酶的一种,可调控植物的生长发育及先天免疫反应. 为揭示BAK1基因在甘蔗应答不良外界环境方面的作用,利用电子克隆及RT-PCR方法从甘蔗品种崖城05-179叶片cDNA中克隆到1个BAK1基因及其1个可变剪接体,分别命名为ScBAK1(GenBank登录号:KP032226)和ScBAK1 S1(GenBank登录号:KP032227). 生物信息学分析结果表明,ScBAK1/ScBAK1 S1基因的ORF长1 860 bp/1 770 bp,编码蛋白含有619/589个氨基酸残基,分子量(Mr)为6.928 × 104/6.576 × 104;两种编码蛋白均定位于质膜上,含有信号肽,为酸性、分泌脂溶性蛋白;它们的二级结构以α-螺旋和无规则卷曲为主,其次是延伸链,无β-螺旋;蛋白功能预测显示其主要作为细胞膜蛋白,还参与氨基酸及辅酶因子生物合成. 荧光定量PCR分析结果显示,ScBAK1 S1基因的表达在非生物(水杨酸SA、CuCl2、PEG、脱落酸ABA、NaCl、茉莉酸甲酯JA)和生物胁迫(黑穗病菌)下均受到抑制,而ScBAK1却受SA、CuCl2、PEG、NaCl和黑穗病菌的诱导. 结果还表明,相较于ScBAK1在甘蔗抗黑穗病性、渗透胁迫以及细胞生长方面发挥作用来说,ScBAK1 S1缺失的氨基酸序列或数目在ScBAK1的抗逆性方面扮演了重要角色. ScBAK1和ScBAK1 S1的不同丰度表达为深入解析ScBAK1基因在生物和非生物逆境条件下的功能奠定了基础.
Abstract:
Alternative splicing (AS) is an important part of regulation of eukaryotic gene expression. BAK1 (Brassinosteroid insensitive1-associated receptor kinase 1) is a specific type of plant serine/threonine protein kinases, and can regulate growth and development and natural immunization. To reveal the responses of sugarcane BAK1 gene to the adverse environment, a ScBAK1 gene and its alternative spliceosome, termed ScBAK1 (GenBank accession number: KP032226) and ScBAK1 S1 (GenBank accession number: KP032227), were cloned from leaf cDNA of Yacheng 05-179 utilizing the methods of electronic cloning and RT-PCR. The open reading frame (ORF) length of ScBAK1/ScBAK1 S1 gene was 1 860bp/1 770bp, encoding 619/589 amino acids residues. The predicted molecular weight of the protein was 69.28 kDa/ 65.76 kDa. Both proteins were located in plasma membrane, estimated as acid, hydrophikic and secretive proteins. Random coil and alpha helix gave priority to extended strand in their secondary structure without beta turn. The most important protein function was cell envelope, secondly biosynthesis of amino acids and cofactors. Real-time quantitative PCR analysis revealed that the expression of sugarcane ScBAK1 S1 gene exhibited the reduced expression trend under smut fungus stress and various abiotic exogenous stresses, including SA, CuCl2, PEG, ABA, NaCl and JA, while the expression of ScBAK1 gene was induced by SA, CuCl2, PEG, NaCl and smut fungus stresses. The phenomenon showed that the absent sequences or amounts of ScBAK1 S1 gene plays a key role in the response of ScBAK1 to the stress of sugarcane smut fungus, osmotic stress and cell growth. The differential expression of ScBAK1 and ScBAK1 S1 lays a foundation for further research on the function of ScBAK1 gene under biotic and abiotic stress.

参考文献/References:

1 冯蕾. 水稻OsRLK824基因的表达特性与功能分析[D]. 北京: 中国农业科学院, 2012 [Feng L. The expression characteristics and functional analysis of OsRLK824 in rice [D]. Beijing: Chinese Academy of Agricultural Sciences, 2012]
2 Hecht V, Vielle-Calzada JP, Hartog MV. Schmidt Ed DL, Boutilier K, Grossniklaus U, Vries SC. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture [J]. Plant Physiol, 2001, 127 (3): 803-816
3 田荣, 杨勇, 王晓峰. 植物受体激酶BAK1研究进展[J]. 西北植物学报, 2014, 34 (3): 636-644 [Tian R, Yang Y, Wang XF. Research progress on BAK1 of a receptor kinase [J]. Acta Bot Bor-Occid Sin, 2014, 34 (3): 636-644]
4 Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling [J]. Cell, 2002, 110 (2): 213-222
5 Morris ER, Walkery JC. Receptor-like protein kinases: the keys to response [J]. Curr Opin Plant Biol, 2003, 6 (4): 339-342
6 Shan LB, He P, Li JM, Heese A, Peck SC, Nürnberger T, Martin GB, Sheen J. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity [J]. Cell Host Microbe, 2008, 4 (1): 17-27
7 Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions: shaping the evolution of the plant immune response [J]. Cell, 2006, 124 (4): 803-814
8 Chinchilla D, Zipfel C, Robatzek S, KemmerlingB, Nürnberger T, Jones JD, Felix G, Boller T. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence [J]. Nature, 2007, 448 (7152): 497-500
9 Chinchilla D, Shan LB, He P, de Vries S, Kemmerling B. One for all: the receptor-associatedkinase BAK1 [J]. Trends Plant Sci, 2009, 14 (10): 535-541
10 Wang Z, Meng P, Zhang XY, Ren DT, Yang SH. BON1 interacts with the protein kinases BIR1 and BAK1 in modulation of temperature-dependent plant growth and cell death in Arabidopsis [J]. Plant J, 2011, 67 (6):1081-1093
11 Lu DP, Wu SJ, Gao XQ, Zhang YL, Shan LB, He P. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity [J]. P Natl Acad Sci USA, 2010, 107 (1): 496-501
12 Wang L, Xu YY, Li J, Powell RA, Xu ZH, Chong K. Transgenic rice plants ectopically expressing AtBAK1 are semi-dwarfed and hypersensitive to 24-epibrassinolide [J]. J Plant Physiol, 2007, 164 (5): 655-664
13 Yang DH, Hettenhausen C, Baldwin IT, Wu JQ. The multifaceted function of BAK1/SERK3: Plant immunity to pathogens and responses 1 to insect herbivores [J]. Plant Signal Behav, 2011, 6 (9):1322-1324
14 Chaparro-Garcia A, Wilkinson RC, Gimenez-Ibanez S, Findlay K, Coffey MD, Zipfel C, Rathjen JP, Kamoun S, Schornack S. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen phytophthora infestans in Nicotiana benthamiana [J]. PLoS ONE, 2011, 6 (1): e16608
15 杨辉, 闽东波, 黄吉, 唐亮, 黄云. 拟南芥BAK1基因转化及防御作用[J]. 生物技术通报, 2012, 8: 71-75 [Yang H, Min DT, Huang J, Tang L, Huang Y. Transformation and the defense role of BAK1 in Arabidopsis thaliana [J]. Biotechnol Bull, 2012, 8: 71-75]
16 Vicentini R, Felix JD,Dornelas MC,Menossi M. Characterization of a sugarcane (Saccharum spp.) gene homolog to the brassinosteroid insensitive1-associated receptor kinase 1 that is associated to sugar content [J]. Plant Cell Rep, 2009, 28 (3): 481-491
17 闻芳, 李衍达. 基因表达调控与选择性剪接机制研究[J]. 电子学报, 2001, 29 (12A): 1735-1739 [Wen F, Li YD. A bioinformatic analysis of alternatively spliced genes of human [J]. Acta Electron Sin, 2001, 29 (12A): 1735-1739]
18 李稚锋, 王正志, 张成岗. 真核基因可变剪接研究现状与展望[J].生物信息学, 2004, 2 (2): 35-38 [Li ZF, Wang ZZ, Zhang CG. Current progress on alternative pre-mRNA splicing research in eukaryote genes [J]. China J Bioinformatics, 2004, 2 (2): 35-38]
19 邱莫寒, 俞宁. RNA的可变剪接[J]. 畜牧与饲料科学, 2010, 31 (5): 13-14 [QiU MH, Yu N. Alternative RNA splicing [J]. Anim Husbandry Feed Sci, 2010, 31 (5): 13-14]
20 Harrison PM, Kumar A, Lang N, Snyder M, Gerstein M. A question of size: the eukaryotic proteome and the problems in defining it [J]. Nucleic Acids Res, 2002, 30 (5): 1083-1090
21 Roberts GC, Smith CWJ. Alternative splicing: combinatorial output from the genome [J]. Curt Opin Chem Biol, 2002, 6 (3): 375-383
22 Grabowski PJ, Black DL. Alternative RNA splicing in the nervous system [J]. Prog Neurobiol, 2001, 65 (3): 289-308
23 Lopez AJ. Alternative splicing of pre-mRNA: developmental consequences and mechanism of regulation [J]. Ann Rev Genet, 1998, 32 (1): 279-305
24 肖新换, 黄宁, 张玉叶, 杨宗锋, 凌辉, 黄珑, 苏炜华, 阙友雄. 甘蔗光合系统Ⅰ亚基O基因的克隆与表达分析[J]. 应用与环境生物学报, 2015, 21 (2): 208-214 [Xiao XH, Huang N, Zhang YY, Yang ZF, Ling H, Huang L, Su WH, Que YX. Cloning and expression of photosystem I subunit O gene from sugarcane [J]. Chin J Appl Environ Biol, 2015, 21 (2): 208-214]
25 Que YX, Xu LP, Wu QB, Liu YF, Ling H, Liu YH, Zhang YY, Guo JL, Su YC, Chen JB, Wang SS, Zhang CG.. Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut [J]. BMC Genomics, 2014, 15 (1): 996
26 Ling H, Wu QB, Guo JL, Xu LP, Que YX. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR [J]. PloS ONE, 2014, 9 (5): e97469
27 Linak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCT method [J]. Methods, 2001, 25 (4): 402-408
28 阙友雄, 许莉萍, 林剑伟, 陈如凯. 甘蔗NBS-LRR类抗病基因同源序列的分离与鉴定[J]. 作物学报, 2009, 35 (4): 631-639 [Que YX, Xu LP, Lin JW, Chen RK. Isolation and characterization of NBS-LRR resistance gene analogs from sugarcane [J]. Acta Agron Sin, 2009, 35 (4): 631-639]
29 纪冬, 辛绍杰. 实时荧光定量PCR的发展和数据分析[J]. 生物技术通讯, 2009, 20 (4): 598-600 [Ji Dong, Xin SJ. Development and data analysis of real-time fluorescent quantitative PCR [J]. Biotechnol Bull, 2009, 20 (4): 598-600]
30 李娇. 玉米苗期干旱胁迫下可变剪接及其调控因子的研究[D]. 郑州: 郑州大学, 2013 [Li J. Analysis of alternative splicing in whole transcriptome and its regulator SR protein under drought stress in seed of Zea mays L. [D]. Zhengzhou: Zhengzhou University, 2013]
31 Carvalho RF, Feijao CV, Duque P. On the physiological significance of alternative splicing events in higher plants [J]. Protoplasma, 2012, 250 (3): 639-650
32 宋喜梅. 甘蔗SPS家族基因表达分析及SPSⅢ可变剪接的研究[D]. 福州: 福建师范大学, 2010 [Song XM. Expression analysis of SPS gene families and study on alternative splicing of SPSⅢ from Saccharum officinarum [D]. Fuzhou: Fujian Normal University, 2010]
33 Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat [J]. Genes Genet Syst, 2006, 81 (2): 77-91
34 Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. [J]. Plant J, 2007, 50 (1): 54-69
35 Matsukura S, Mizoi J, Yoshida T, TodakaD, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes [J]. Mol Genet Genomics, 2010, 283 (2): 185-196
36 Li J, Li X, Guo L, Lu F, Feng XJ, He K, Wei LP, Chen ZL, Qu LJ, Gu HY. A subgroup of MYB transcription factor genes undergoes highly conserved alternative splicing in Arabidopsis and rice [J]. J Exp Bot, 2006, 57 (6): 1263-1273
37 Koo SC, Yoon HW, Kim CY, Moon BC, Cheong YH, Han HJ, Lee SM, Kang KY, Kim MC, Lee SY, Chung WS, Cho MJ. Alternative splicing of the OsBWMK1 gene generates three transcript variants showing differential subcellular localizations [J]. Biochem Bioph Res Co, 2007, 360 (1): 188-193
38 林芹. 棉花GhSERKs基因的克隆及表达分析[D]. 乌鲁木齐: 新疆农业大学, 2012 [Lin Q. The cloning and expression analysis of GhSERKs gene from cotton (Gossypiumhirsutum L.) [D]. Urumqi: Xinjiang Agricultural University, 2012]
39 Heese A, Hann DR, Gimenez-Ibanez S, Jones AME, He K, Li J, Schroeder JI, Peck SC, Rathjen JP. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants [J]. P Natl Acad Sci USA, 2007, 104 (29): 12217-12222
40 Lu DP, Lin WW, Gao XQ, Wu SJ, Cheng C, Avila J, Heese A, Devarenne TP, He P, Shan LB. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity [J]. Science, 2011, 332 (6036): 1439-1442
41 饶力群, 官春云, 罗泽民. 过氧化氢、水杨酸与植物抗病性关系的研究进展[J]. 湖南农业大学学报, 2000, 26 (1): 9-14 [Rao LQ, Guan CY, Luo ZM. Hydrogen peroxide, salicylic acid and plant disease resistance [J]. J Hunan Agric Univ, 2000, 26 (1): 9-14]
42 Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawhar R, Ward E, Uknes S, Kessmann H, Ryals J. Salicylic acid is not the translocated signal responsible for in ducing systemic acquired resistance but is required in signal transduction [J]. Plant Cell, 1994, 6 (7): 959-965
43 刘正鲁, 朱月林, 魏国平, 杨立飞, 张古文, 胡春梅. NaCl胁迫对茄子嫁接苗叶片多胺代谢和ABA含量的影响[J]. 生态学报, 2008, 28 (4): 1586-1592 [Liu ZL, Zhu YL , Wei GP, Yang LF, Zhang GW, Hu CM. Effects of NaCl stress on metabolism of polyamines and ABA content in leaves of grafted eggplants [J]. Acta Ecol Sin, 2008, 28 (4): 1586-1592]
44 Jia GL, Dai HP, Feng BL, Zhang SQ, Zhang SW. Biochemical characteristics in Broomcorn Millet (Panicum miliaceum L.) seedlings under PEG simulated drought stress [J]. Acta Bot Bor-Occid Sin, 2008, 28 (10): 2073-2079
45 孙学娟, 刘美君, 高辉远, 杨程, 张子山, 孟庆伟. CuCl2胁迫对烟草BY-2悬浮细胞死亡的诱导[J]. 植物生理学报, 2012, 48 (2): 173-180 [Sun XJ, Liu MJ, Gao HY, Yang C, Zhang ZS, Meng QW. Cell death induced by CuCl2 stress in tobacco BY-2 cells [J]. J Plant Physiol, 2012, 48 (2):173-180]
46 Drapier D, Girard-Bascou J, Stern DB, Wollman FA. A dominant nuclear mutation in Chlamydomonas identifies a factor controlling chloroplast mRNA stability by acting on the coding region of the atpA transcript [J]. Plant J, 2002, 31 (6): 687-697
47 熊高飞, 熊向阳, 张吉翔. mRNA 结构及其稳定性的关系[J]. 细胞生物学杂志, 2006, 28(4): 513-517 [Xiong GF, Xiong XY, Zhang JX. The relationship between mRNA structure and its stability [J]. Chin J Cell Biol, 2006, 28 (4): 513-517]
48 Geissmann T, Marzi S, Romby P. The role of mRNA structure in translational control in bacteria [J]. RNA Biol, 2009, 6 (2): 153-160
49 Smith CWJ, Valcárcel J. Alternative pre-mRNA splicing: the logic of combinatorial control [J]. Trends BiochemSci, 2000, 25 (8): 381-388
50 Srebrow A, Kornblihtt AR. The connection between splicing and cancer [J]. J Cell Sci, 2006, 119 (13): 2635-2641
51 Patton JG, Mayer SA, Tempst P, Nadal-Ginard B. Characterization and molecular cloning of polypyrimidine tract-binding protein: a component of a complex necessary for pre-mRNA splicing [J]. Genes Dev, 1991, 5 (7): 1237-1251
52 Singh R, Valcarcel J, Green MR. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins [J]. Science, 1995, 268 (5214): 1173-1176
53 Ladd AN, Cooper TA. Finding signals that regulate alternative splicing in the post-genomicera [J]. Genome Biol, 2002, 3 (11): 1-16
54 Kornblihtt AR, de la Mata M, Fededa JP, Munoz MJ, Nogues G. Multiple links between transcription and splicing [J]. RNA, 2004, 10 (10): 1489-1498
55 Shepard PJ, Hertel KJ. Conserved RNA secondary structures promote alternative splicing [J]. RNA, 2008, 14 (8): 1463-1469
56 陈志宏, 傅梅萍, 李远峰, 陶永新, 江玉姬, 谢宝贵. 草菇6-磷酸葡萄糖酸脱氢酶基因可变剪接体克隆与表达分析[J]. 应用与环境生物学报, 2014, 20 (4): 584-589 [Chen ZH, Fu MP, Li YF, Tao YX, Jiang YJ, Xie BG..Cloning and expression of 6-phosphogluconate dehydrogenase alternative splicing in Volvariella volvacea [J]. Chin J Appl Environ Biol, 2014, 20 (4): 584-589]

相似文献/References:

[1]罗俊,袁照年,张华,等.宿根甘蔗产量性状的稳定性分析[J].应用与环境生物学报,2009,15(04):488.[doi:10.3724/SP.J.1145.2009.00488]
 LUO Jun,YUAN Zhaonian,ZHANG Hua,et al.Stability Analysis on Yield Characters of Sugarcane Ratoon[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):488.[doi:10.3724/SP.J.1145.2009.00488]
[2]叶冰莹,邱思,周平,等.甘蔗蔗糖磷酸合成酶SPSⅡ cDNA片段克隆与表达分析[J].应用与环境生物学报,2011,17(05):673.[doi:10.3724/SP.J.1145.2011.00673]
 YE Bingying,QIU Si,ZHOU Ping,et al.Cloning and Expression Analysis of Sucrose-phosphate Synthase II Gene from Sugarcane[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):673.[doi:10.3724/SP.J.1145.2011.00673]
[3]黄祖新,黄镇,叶冰莹,等.宿根甘蔗根际土壤细菌多样性分析中培养法与非培养法比较研究[J].应用与环境生物学报,2011,17(05):742.[doi:10.3724/SP.J.1145.2011.00742]
 HUANG Zuxin,HUANG Zhen,YE Bingying,et al.Comparison of Culture-dependent and -independent Approaches for Diversity Analysis of Soil Bacteria in the Rhizosphere of Sugarcane[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):742.[doi:10.3724/SP.J.1145.2011.00742]
[4]罗俊,邓祖湖,阙友雄,等.国家甘蔗第七轮区域试验品种的丰产性及稳定性[J].应用与环境生物学报,2012,18(05):734.[doi:10.3724/SP.J.1145.2012.00734]
 LUO Jun,DENG Zuhu,QUE Youxiong,et al.Productivity and Stability of Sugarcane Varieties in the 7th Round National Regional Trial of China[J].Chinese Journal of Applied & Environmental Biology,2012,18(05):734.[doi:10.3724/SP.J.1145.2012.00734]
[5]苏亚春,凌辉,王恒波,等.甘蔗SCoT-PCR反应体系优化与多态性引物筛选及应用[J].应用与环境生物学报,2012,18(05):810.[doi:10.3724/SP.J.1145.2012.00810]
 SU Yachun,LIN Hui,WANG Hengbo,et al.Optimization of SCoT-PCR Reaction System, and Screening and Utilization of Polymorphic Primers in Sugarcane[J].Chinese Journal of Applied & Environmental Biology,2012,18(05):810.[doi:10.3724/SP.J.1145.2012.00810]
[6]肖新换,黄宁,张玉叶,等.甘蔗光合系统Ⅰ亚基O基因的克隆与表达分析[J].应用与环境生物学报,2015,21(02):208.[doi:10.3724/SP.J.1145.2014.09033]
 XIAO Xinhuan,HUANG Ning,ZHANG Yuye,et al.Cloning and expression of photosystem I subunit O gene from sugarcane[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):208.[doi:10.3724/SP.J.1145.2014.09033]
[7]阙万才,黄宁,刘峰,等.甘蔗真核生物翻译起始因子5A基因的克隆与表达分析[J].应用与环境生物学报,2015,21(06):1120.[doi:10.3724/SP.J.1145.2015.04008]
 QUE Wancai,HUANG Ning,LIU Feng,et al.Isolation and expression of a eukaryotic translation initiation factor 5A gene from sugarcane[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):1120.[doi:10.3724/SP.J.1145.2015.04008]
[8]苏炜华# 黄 珑# 黄 宁 刘 峰 苏亚春 肖新换 凌 辉 阙友雄.甘蔗细胞色素P450还原酶基因的RT-PCR扩增与表达分析[J].应用与环境生物学报,2016,22(02):173.[doi:10.3724/SP.J.1145.2015.07029]
 SU Weihua#,HUANG Long#,HUANG Ning,et al.RT-PCR amplification and expression analysis of a cytochrome P450 reductasegene from sugarcane[J].Chinese Journal of Applied & Environmental Biology,2016,22(05):173.[doi:10.3724/SP.J.1145.2015.07029]
[9]苏炜华,黄宁,凌辉,等.甘蔗乙醇脱氢酶基因的克隆与表达分析[J].应用与环境生物学报,2017,23(03):474.[doi:2016.0704]
 SU Weihua,HUANG Ning,LING Hui,et al.Cloning and expression of ScADH from sugarcane[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):474.[doi:2016.0704]
[10]黄宁,李聪娜,汤翰臣,等.甘蔗泛素结合酶基因的克隆与表达[J].应用与环境生物学报,2018,24(04):845.[doi:10.19675/j.cnki.1006-687x.2017.11006]
 HUANG Ning,LI Congna,TANG Hanchen,et al.Cloning and expression analysis of a ubiquitin-conjugating enzyme gene in sugarcane[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):845.[doi:10.19675/j.cnki.1006-687x.2017.11006]

备注/Memo

备注/Memo:
国家自然科学基金项目(31340060)、福建省杰出青年基金项目(2015J06006)和福建省高等学校新世纪优秀人才支持计划项目(JA14095)资助 Supported by the National Natural Science Foundation of China (31340060), the Natural Science Foundation of Fujian Province (2015J06006) and the Program for New Century Excellent Talents in Fujian Province University (JA14095)
更新日期/Last Update: 2015-10-29