|本期目录/Table of Contents|

[1]邓辉,王成,吕豪豪,等.堆肥过程放线菌演替及其木质纤维素降解研究进展[J].应用与环境生物学报,2013,19(04):581-586.[doi:10.3724/SP.J.1145.2013.00581]
 DENG Hui,WANG Cheng,LÜ,et al.Research Progress in Succession of Actinomycetal Communities and Their Capacity of Degrading Lignocellulose During Composting Process[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):581-586.[doi:10.3724/SP.J.1145.2013.00581]
点击复制

堆肥过程放线菌演替及其木质纤维素降解研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
19卷
期数:
2013年04期
页码:
581-586
栏目:
综述
出版日期:
2013-08-25

文章信息/Info

Title:
Research Progress in Succession of Actinomycetal Communities and Their Capacity of Degrading Lignocellulose During Composting Process
作者:
邓辉王成吕豪豪王飞儿屠巧萍吴伟祥
(浙江大学环境与资源学院 杭州 310058)
Author(s):
DENG Hui WANG Cheng LÜ Haohao WANG Feier TU Qiaoping WU Weixiang
(College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)
关键词:
堆肥木质纤维素生物降解放线菌多样性
Keywords:
compost lignocellulose biodegradation actinomycetes diversity
分类号:
X712 : Q939.9
DOI:
10.3724/SP.J.1145.2013.00581
文献标志码:
A
摘要:
木质纤维素是一种产量大且难降解的生物质资源,相关降解微生物筛选及其菌剂研发是当前木质纤维素资源化利用研究的热点. 本文综述了近年木质纤维素在堆肥过程中的降解及其中微生物活动的相关研究,重点阐述了堆肥过程放线菌种群演替特性和放线菌对木质纤维素的降解作用及机理的最新研究进展. 众多研究表明放线菌在堆肥过程木质纤维素物料的降解中起着极其重要的作用;大量耐高温、抗酸碱和耐盐分冲击性降解木质纤维素的放线菌在堆肥过程得到富集,使堆肥成为高效木质纤维素降解性放线菌及其相关酶筛选的一个独特的种质资源. 本文最后展望了该领域未来的研究方向,以期为木质纤维素的高效降解、高值化利用及相关降解微生物种质资源开发提供理论参考. 表2 参61
Abstract:
Lignocellulosic biomass is regarded as the most abundant and recalcitrant raw material. Currently, research on screening lignocellulose-degrading microorganisms and developing microbial agents is a hot topic in the lignocellulosic resource utilization system.This review attempted to provide descriptive information on the lignocellulose degradation and the associated microbial activity in the composting process, highlighting the succession of lignocellulose degrading actinomycetes and the related mechanism. Most studies suggest that actinomycetal communities display an active role in the degradation and transformation of lignocellulosic materials. As a large number of lignocellulose-degrading actinomycetes with high temperature, acid and alkali and salinity shock resistances are enriched in the composting process, the compost ecosystem is considered as an excellent source for trapping novel lignocellulose-degrading microorganisms. This review also suggested some perspectives for the future researches in this field, providing a theoretical framework for leading to a ‘greener’ technology. Tab 2, Ref 61

参考文献/References:

1 Breznak JA, Brune A. Role of microorganisms in the digestion of lignocellulose by termites [J]. Annu Rev Entomol,1994, 39: 453-487
2 Sanderson K. Lignocellulose: a chewy problem [J]. Nature, 2011, 474: S12-S14
3 Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. Biomass recalcitrance: engineering plants and enzymes for biofuels production [J]. Science, 2007, 315: 804-807
4 Haug RT. The Practical Handbook of Compost Engineering [M]. CRC, 1993
5 DeAngelis KM, Gladden JM, Allgaier M, D’haeseleer P, Fortney JL, Reddy A, Hugenholtz P, Singer SW, Vander Gheynst JS, Silver WL. Strategies for enhancing the effectiveness of metagenomic-based enzyme discovery in lignocellulolytic microbial communities [J]. Bioenergy Res, 2010, 3: 146-158
6 Bugg TDH, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation [J]. Curr Opin Biotechnol, 2011, 22: 394-400
7 Taibi Z, Saoudi B, Boudelaa M, Trigui H, Belghith H, Gargouri A, Ladjama A. Purification and biochemical characterization of a highly thermostable xylanase from Actinomadura sp. strain Cpt20 isolated from poultry compost [J]. Appl Biochem Biotechnol, 2012, 166 (3): 163-679
8 Jang HD, Chen KS. Production and characterization of thermostable cellulases from Streptomyces transformant T3-1 [J]. World J Microbiol Biotechnol, 2003, 19: 263-268
9 Singh R, Kapoor V, Kumar V. Production of thermostable, Ca+ 2-independent, maltose producing α-amylase by Streptomyces sp. MSC702 (MTCC 10772) in submerged fermentation using agro-residues as sole carbon source [J]. Ann Microbiol, 2012, 62: 1003-1012
10 Allgaier M, Reddy A, Park JI, Ivanova N, D’haeseleer P, Lowry S, Sapra R, Hazen TC, Simmons BA, VanderGheynst JS. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community [J]. PLoS ONE, 2010, 5: e8812
11 Diaz LF, De Bertoldi M, Bidlingmaier W. Compost Science and Technology [M]. Amsterdam: Elsevier Science, 2007
12 Bernal M, Alburquerque J, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment. A review [J]. Bioresour Technol, 2009, 100: 5444-5453
13 Yu H, Zeng G, Huang H, Xi X, Wang R, Huang D, Huang G, Li J. Microbial community succession and lignocellulose degradation during agricultural waste composting [J]. Biodegradation,2007, 18: 793-802
14 黄红丽, 曾光明, 黄国和, 郁红艳. 堆肥中木质素降解微生物对腐殖质形成的作用[J]. 中国生物工程杂志, 2004, 24: 29-31 [Huang HL, Zeng GM, Huang GH, Yu HY. Current study on the effect of lignolytic organisms on humus formation in composting [J]. China Biotechnol, 2004, 24: 29-31]
15 Miller FC. Composting as a process based on the control of ecologically selective factors [A]. In: Metting FB Jr ed. Soil Microbial Ecology: Applications in Agricultural and Environmental Management [C]. New York: Marcel Dekker Inc. , 1992. 515-544
16 Albrecht R, Périssol C, Ruaudel F, Petit JL, Terrom G. Functional changes in culturable microbial communities during a co-composting process: Carbon source utilization and co-metabolism [J]. Waste Manage, 2010, 30: 764-770
17 Gladden JM, Allgaier M, Miller CS, Hazen TC, VanderGheynst JS, Hugenholtz P, Simmons BA, Singer SW. Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass [J]. Appl Environ Microbiol, 2011, 77: 5804-5812
18 Carere CR, Sparling R, Cicek N, Levin DB. Third generation biofuels via direct cellulose fermentation [J]. Intern J Mol Sci, 2008, 9: 1342-1360
19 Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, Coosemans J, Insam H, Swings J. A survey of bacteria and fungi occurring during composting and self-heating processes [J]. Ann Microbiol, 2003, 53: 349-410
20 McCarthy A. Lignocellulose-degrading actinomycetes [J]. FEMS Microbiol Lett, 1987, 46: 145-163
21 Ryckeboer J, Mergaert J, Coosemans J, Deprins K, Swings J. Microbiological aspects of biowaste during composting in a monitored compost bin [J]. J Appl Microbiol, 2003, 94: 127-137
22 席北斗, 刘鸿亮. 堆肥中纤维素和木质素的生物降解研究现状[J]. 环境污染治理技术与设备, 2002, 3: 19-23 [Xi BD, Liu HL. Study on current status of lignin and cellulose biodegradation in composting process [J]. Tech Equip Environ Pollut Control, 2002, 3:19-23]
23 Steger K, Sjögren ÅM, Jarvis Å, Jansson J, Sundh I. Development of compost maturity and Actinobacteria populations during full-scale composting of organic household waste [J]. J Appl Microbiol, 2007, 103: 487-498
24 Peters S, Koschinsky S, Schwieger F, Tebbe CC. Succession of microbial communities during hot composting as detected by PCR - single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes [J]. Appl Environ Microbiol, 2000, 66: 930-936
25 Xiao Y, Zeng GM, Yang ZH, Ma YH, Huang C, Xu ZY, Huang J, Fan CZ. Changes in the actinomycetal communities during continuous thermophilic composting as revealed by denaturing gradient gel electrophoresis and quantitative PCR [J]. Bioresour Technol, 2011, 102: 1383-1388
26 Tiquia S. Evolution of extracellular enzyme activities during manure composting. J Appl Microbiol, 2002, 92: 764-775
27 Steger K, Jarvis Å, Vasara T, Romantschuk M, Sundh I. Effects of differing temperature management on development of Actinobacteria populations during composting [J]. Res Microbiol, 2007, 158: 617-624
28 韩铭, 袁月祥, 闫志英, 贺蓉娜, 刘晓风, 廖银章. 一株产耐热纤维素酶菌株的筛选及酶学性质[J]. 应用与环境生物学报, 2012, 18: 75-79 [Han M, Yuan YX, Yan ZY, He RN, Liu XF, Liao YZ. Screening of a thermostable cellulase-producing strain and its enzymatic properties [J]. Chin J Appl Environ Biol, 2012, 18: 75-79]
29 Hayakawa M, Yamamura H, Nakagawa Y, Kawa Y, Hayashi Y, Misonou T, Kaneko H, Kikushima N, Takahashi T, Yamasaki S. Taxonomic diversity of actinomycetes isolated from swine manure compost [J]. Actinomycetologica, 2010, 24: 58-62
30 Song J, Weon HY, Yoon SH, Park DS, Go SJ, Suh JW. Phylogenetic diversity of thermophilic actinomycetes and Thermoactinomyces spp. isolated from mushroom composts in Korea based on 16S rRNA gene sequence analysis [J]. FEMS Microbiol Lett, 2001, 202: 97-102
31 刘洁丽, 王靖. 生物产纤维素酶研究进展[J]. 化学与生物工程, 2009, 25: 9-12 [Liu JL, Wang J. research progress in cellulase excreted from biology [J]. Chem Bioeng, 2009, 25: 9-12]
32 Niladevi K, Prema P. Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization [J]. Bioresour Technol, 2008, 99: 4583-4589
33 Xu J, Yang Q. Isolation and characterization of rice straw degrading Streptomyces griseorubens C-5 [J]. Biodegradation, 2010, 21: 107-116
34 Crawford D. Microbial conversions of lignin to useful chemicals using a lignin-degrading Streptomyces [D]. Moscow: University of Idaho, 1981
35 Crawford DL, Pometto III AL, Crawford RL. Lignin degradation by Streptomyces viridosporus: isolation and characterization of a new polymeric lignin degradation intermediate [J]. Appl Environ Microbiol, 1983, 45: 898-904
36 Phelan MB, Crawford DL, Anthony III L. Isolation of lignocellulose-decomposing actinomycetes and degradation of specifically 14C-labeled lignocelluloses by six selected Streptomyces strains [J]. Can J Microbiol, 1979, 25: 1270-1276
37 Crawford DL. Lignocellulose decomposition by selected streptomyces strains [J]. Appl Environ Microbiol, 1978, 35: 1041-1045
38 Jing D. Improving the simultaneous production of laccase and lignin peroxidase from Streptomyces lavendulae by medium optimization [J]. Bioresour Technol, 2010, 101: 7592-7597
39 Barder MJ, Crawford DL. Effects of carbon and nitrogen supplementation on lignin and cellulose decomposition by a Streptomyces [J]. Can J Microbiol, 1981, 27: 859-863
40 Trojanowski J, Haider K, Sundman V. Decomposition of 14 C-labelled lignin and phenols by a Nocardia sp. [J]. Arch Microbiol, 1977, 114: 149-153
41 Haider K, Trojanowski J, Sundman V. Screening for lignin degrading bacteria by means of 14 C-labelled lignins [J]. Arch Microbiol, 1978, 119: 103-106
42 杨暖, 丁梦璇, 汪文静, 谢响明, 何晓青, 赵国柱, 李志茹. 绿色糖单孢菌-木素过氧化物酶的发酵工艺研究[J]. 生物技术通报, 2009 (9): 134-138 [Yang N, Ding MX, Wang WJ, Xie XM, He XQ, Zhao GZ, Li ZR. Studies of fermentation conditions of lignin peroxidases from Saccharomonospora viridis [J]. Biotechnol Bull, 2009 (9): 134-138]
43 计红果, 庞浩, 张容丽, 廖兵. 木质纤维素的预处理及其酶解[J]. 化学通报, 2008, 5: 329-335 [Ji HG, Pang H, Zhang RL, Liao B. Pretreatment and enzymatic hydrolysis of lignocellulose [J]. Chemistry, 2008, 5: 329-335]
44 Stutzenberger F, Lupo D. pH-dependent thermal activation of endo-1,4-[beta]-glucanase in Thermomonospora curvata [J]. Enzyme Microb Technol, 1986, 8: 205-208
45 Stutzenberger FJ. Cellulolytic activity of Thermomonospora curvata: optimal assay conditions, partial purification, and product of the cellulase [J]. Appl Microbiol, 1972, 24: 83-90
46 Hägerdal BGR, Ferchak JD, Pye EK. Cellulolytic enzyme system of Thermoactinomyces sp. grown on microcrystalline cellulose [J]. Appl Environ Microbiol, 1978, 36: 606-612
47 Collmer A, Wilson DB. Cloning and expression of a Thermomonospora YX endocellulase gene in E. coli [J]. Nat Biotechnol, 1983, 1: 594-601
48 Bartley T, Waldron C, Eveleigh D. A cellobiohydrolase from a thermophilic actinomycete, Microbispora bispora [J]. Appl Biochemistry Biotechnol, 1984, 9: 337-337
49 Saratale GD, Oh SE. Production of thermotolerant and alkalotolerant cellulolytic enzymes by isolated Nocardiopsis sp. KNU [J]. Biodegradation, 2011, 22: 905-919
50 Kluepfel D, Shareck F, Mondou F, Morosoli R. Characterization of cellulase and xylanase activities of Streptomyces lividans [J]. Appl Microbiol Biotechnol, 1986, 24: 230-234
51 齐云, 陈飞, 袁月祥, 刘晓风, 廖银章. 一株能分解纤维素的高温耐碱放线菌[J]. 应用与环境生物学报, 2003, 9 (3): 322-325 [Qi Y, Chen F, Yuan YX, Liu XF, Liao YZ. A cellulose degrading thermophilic alkalitolerant actinomycete [J]. Chin J Appl Environ Biol, 2003, 9 (3): 322-325]
52 Kausar H, Sariah M, Mohd Saud H, Zahangir Alam M, Razi Ismail M. Isolation and screening of potential actinobacteria for rapid composting of rice straw [J]. Biodegradation, 2011, 22: 367-375
53 单志琼, 周峻岗, 周宇飞, 袁汉英, 吕红. 产碱性木聚糖酶菌株的筛选及酶学性质[J]. 遗传, 2012, 34 (3): 356-365 [Shan ZQ, Zhou JG, Zhou YF, Yuan HY, Liu H. Isolation and characterization of an alkaline xylanasefrom a newly isolated Bacillus sp.QH14 [J]. Hereditas, 2012, 34 (3): 356-365]
54 Numan MT, Bhosle NB. α-L-Arabinofuranosidases: the potential applications in biotechnology [J]. J Ind Microbiol Biotechnol, 2006, 33: 247-260
55 John M, Schmidt B, Schmidt J. Purification and some properties of five endo-1,4-β-D-xylanases and β-D-xylosidase produced by a strain of Aspergillus niger [J]. Can J Biochem, 1979, 57: 125-134
56 Kusakabe I, Yasui T, Kobayashi T. Studies on xylanase system of Streptomyces [J]. J Agric Chem Soc Jpn,1969, 43: 145-153
57 Nakanishi K, Yasui T, Kobayashi T. Inducers for the xylanase production by Streptomyces sp. [J]. J Ferment Technol, 1976, 54 (11): 801-807
58 Krishna P, Arora A, Reddy MS. An alkaliphilic and xylanolytic strain of actinomycetes Kocuria sp. RM1 isolated from extremely alkaline bauxite residue sites [J]. World J Microbiol Biotechnol, 2008, 24: 3079-3085
59 George SP, Ahmad A, Rao MB. A novel thermostable xylanase from Thermomonospora sp.: influence of additives on thermostability [J]. Bioresour Technol, 2001, 78: 221-224
60 Li J, Yuan H, Yang J. Bacteria and lignin degradation [J]. Front Biol China, 2009, 4: 29-38
61 Moreira LRS, Milanezi NG, Filho EXF. Enzymology of plant cell wall breakdown: an update [A]. In: Buckeridge MS, Goldman GH eds. Routes to Cellulosic Ethanol [C]. New York: Springer, 2011. 73-96

相似文献/References:

[1]陈寒松,刘丽娜,黄巧云,等.堆肥修复土壤金属污染研究进展[J].应用与环境生物学报,2008,14(06):898.[doi:10.3724/SP.J.1145.2008.00898]
 CHEN Hansong,LIU Lina,HUANG Qiaoyun**,et al.Advance in Studies on Remediation of Metal-Contaminated Soils by Compost[J].Chinese Journal of Applied & Environmental Biology,2008,14(04):898.[doi:10.3724/SP.J.1145.2008.00898]
[2]李科,靳艳玲,甘明哲,等.木质纤维素生产燃料乙醇的关键技术研究现状[J].应用与环境生物学报,2008,14(06):877.[doi:10.3724/SP.J.1145.2008.00877]
 LI Ke,JIN Yanling,et al.Progress in Research of Key Techniques for Ethanol Production from Lignocellulose[J].Chinese Journal of Applied & Environmental Biology,2008,14(04):877.[doi:10.3724/SP.J.1145.2008.00877]
[3]何明雄,祝其丽,潘科,等.利用木质纤维素类生物质发酵生产乙醇重组菌株研究进展[J].应用与环境生物学报,2009,15(04):579.[doi:10.3724/SP.J.1145.2009.00579]
 HE Mingxiong,ZHU Qili,PAN Ke,et al.Progress in Ethanol Production with Lignocellulosic Biomass by Different Recombinant Strains[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):579.[doi:10.3724/SP.J.1145.2009.00579]
[4]蒋荣清,袁兴中,曾光明,等.一组高效木质素降解复合菌的筛选[J].应用与环境生物学报,2010,16(02):247.[doi:10.3724/SP.J.1145.2010.00247]
 JIANG Rongqing,YUAN Xingzhong,ZENG Guangming,et al.Screening of an Efficient Lignin-degrading Composite Microorganisms[J].Chinese Journal of Applied & Environmental Biology,2010,16(04):247.[doi:10.3724/SP.J.1145.2010.00247]
[5]涂毅,高秋强,鲍杰.外源功能基因在木质纤维素依赖型乳酸菌Pediococcus acidilactici DQ2中的表达[J].应用与环境生物学报,2013,19(05):811.[doi:10.3724/SP.J.1145.2013.00811]
 TU Yi,GAO Qiuqiang,BAO Jie.Expression of Functional Genes in Lignocellulose-dependent Lactic Acid Bacterium Pediococcus acidilactici DQ2[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):811.[doi:10.3724/SP.J.1145.2013.00811]
[6]郭亚萍,张国庆,陈青君,等. 双孢蘑菇堆肥过程中细菌群落结构分析[J].应用与环境生物学报,2014,20(05):832.[doi:10.3724/SP.J.1145.2014.03020]
 GUO Yaping,ZHANG Guoqing,CHEN Qingjun,et al. Bacterial community structure analysis for mushroom (Agaricus bisporus) compost using PCR-DGGE technique[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):832.[doi:10.3724/SP.J.1145.2014.03020]
[7]高晓静,张昊琳,佟佳兴,等.不同配方双孢蘑菇培养料的细菌群落结构和理化性状[J].应用与环境生物学报,2017,23(03):502.[doi:2016.0703]
 GAO Xiaojing,ZHANG Haolin,TONG Jiaxing,et al.Bacterial community structure and physical-chemical properties of different formulations of cultivated mushroom (Agaricus bisporus) composts[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):502.[doi:2016.0703]
[8]徐江兵,王艳玲,罗小三,等.纳米氧化锌对堆肥过程中细菌群落演替的影响[J].应用与环境生物学报,2017,23(06):1166.[doi:10.3724/SP.J.1145.2017.04025]
 XU Jiangbing,WANG Yanling,et al.Influence of zinc oxide nanoparticles on the succession of bacterial communities during the composting process[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):1166.[doi:10.3724/SP.J.1145.2017.04025]
[9]游洋,吴波,胡国全,等.牛粪生物质资源综合利用研究进展[J].应用与环境生物学报,2018,24(02):401.[doi: 10.19675/j.cnki.1006-687x.2017.05007]
 YOU Yang,WU Bo,HU Guoquan,et al.Research progress of the comprehensive utilization of cow dung biomass resources[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):401.[doi: 10.19675/j.cnki.1006-687x.2017.05007]
[10]高晓静 张昊琳 桑羽希 蔡盼盼 张国庆 陈青君**.利用杂草培养料栽培双孢蘑菇的可行性分析[J].应用与环境生物学报,2018,24(06):1.[doi:10.19675/j.cnki.1006-687x.2018.01033]
 GAO Xiaojing,ZHANG Haolin,SANG Yuxi,et al.Utilization of Reservoir Weeds for mushroom (Agaricus bisporus) production[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):1.[doi:10.19675/j.cnki.1006-687x.2018.01033]
[11]秦改娟,王晓,陈青君,等.不同配方培养料生产双孢蘑菇过程中主要木质纤维素降解酶及物料组分的变化[J].应用与环境生物学报,2017,23(06):1035.[doi:10.3724/SP.J.1145.2017.01019]
 QIN Gaijuan,WANG Xiao,CHEN Qingjun**& ZHANG Guoqing.Changes of lignocellulolytic enzymes and material components in different compost formulas during the production of Agaricus bisporus[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):1035.[doi:10.3724/SP.J.1145.2017.01019]

备注/Memo

备注/Memo:
国家水体污染控制与治理科技重大专项(2012ZX07101012)资助 Supported by the National Science and Technology Critical Project on Water Pollution Prevention and Control of China (No. 2012ZX07101012)
更新日期/Last Update: 2013-08-22