|本期目录/Table of Contents|

[1]王瑾,王喆之,董忠民.土壤氢氧化细菌促进作物生长机理研究进展[J].应用与环境生物学报,2012,18(05):853-861.[doi:10.3724/SP.J.1145.2012.00853]
 WANG Jin,WANG Zhezhi,DONG Zhongmin.Progress in Recent Research on Soil Hydrogen-oxidizing Bacteria Associated with Legume Nodules and Rotation Benefits[J].Chinese Journal of Applied & Environmental Biology,2012,18(05):853-861.[doi:10.3724/SP.J.1145.2012.00853]
点击复制

土壤氢氧化细菌促进作物生长机理研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
18卷
期数:
2012年05期
页码:
853-861
栏目:
综述
出版日期:
2012-10-25

文章信息/Info

Title:
Progress in Recent Research on Soil Hydrogen-oxidizing Bacteria Associated with Legume Nodules and Rotation Benefits
作者:
王瑾 王喆之 董忠民
(1陕西师范大学生命科学学院 西安 710062)
(2加拿大圣玛丽大学生物系 哈利法克斯 B3H 3C3)
Author(s):
WANG Jin WANG Zhezhi DONG Zhongmin
(1College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China)
(2Department of Biology, Saint Mary’s University, Halifax B3H 3C3, Nova Scotia, Canada)
关键词:
根瘤生物固氮轮作氢氧化细菌ACC脱氨酶土壤植物根际促生菌(PGPR)
Keywords:
nodule biological nitrogen fixation rotation hydrogen-oxidizing bacteria ACC deaminase soil plant growth-promoting rhizobacteria (PGPR)
分类号:
S144
DOI:
10.3724/SP.J.1145.2012.00853
文献标志码:
A
摘要:
综述了近十年来国内外关于豆科作物根际土壤促生菌中氢氧化细菌的研究进展,讨论了根瘤释放H2促进作物生长的可能机制. 与豆科作物进行轮作、间作是提高土壤肥力、增加作物产量的一项传统的农业耕作方式. 对于这种耕作方式优势的机制研究,过去大多数主要集中在土壤氮(N)元素含量的提高. 而近期研究表明土壤氢氧化细菌以豆科作物根瘤菌在固氮过程中释放的H2为能量来源进行化能自养改变土壤微生物种群结构. 一些土壤氢氧化细菌通过产生1-氨基环丙烷-1-羧酸脱氨酶和根瘤菌毒素抑制植物体内乙烯的合成,促进作物生长. 此外,本文进一步讨论了利用现代分子生物学方法研究氢氧化细菌促进作物生长的途径. 图3 参77
Abstract:
Crop rotation and intercropping involving legume crops are traditional agricultural practices to increase soil fertility for achieving a higher yield and profit and allowing for sustained production. N contribution from legumes in crop rotation and intercropping has been suggested as the major factor responsible for the beneficial effect. Recent studies showed that H2 produced as a byproduct of N2 fixation in the legume crops can improve the growth and yield of the subsequent crops by changing soil bacterial community structure, especially the soil hydrogen-oxidizing bacteria which can use H2 as energy and CO2 as carbon source to grow chemoautotrophically. This paper summarizes the recent researches on soil hydrogen-oxidizing bacteria associated with legume nodules, offers some possible plant growth-promoting mechanisms, and also suggests new research directions on this important plant-microbe interaction in agriculture. Fig 3, Ref 77

参考文献/References:

Xu XY (徐祥玉), Wang HM (王海明), Yuan JF (袁家富). Effect of soil fertility quality and yield and quality of the flue-tobacco on different green manure. Chin Agric Sci Bull (中国农学通报), 2009, 25 (13): 58~61
Zhao QG (赵其国), Sun B (孙波), Zhang TL (张桃林). 土壤质量与持续环境Ⅰ.土壤质量的定义及评价方法. Soil (土壤), 1997 (3): 113~120
Medeot DB, Paulucci NS, Albornoz AI, Fumero MV, Bueno MV, Garcia MB, Woelke MR, Okon Y, Dardanelli MS. Plant growth promoting rhizobacteria improving the legume-rhizobia symbiosis. In: Khan MS, Zaidi A, Musarrat J eds. Microbes for Legume Improvement. NewYork: Spring-Verlag, 2010. 473~494
Shen XN (沈学年), Liu XH (刘巽浩). Multiple Cropping. Beijing, China: China Agriculture Press (北京: 中国农业出版社), 1983. 2~3
Shi JG (石建国). 河西灌区玉米间套作吨粮栽培综合农艺措施数学模型的研究及应用. J Maize Sci (玉米科学), 2000, 8 (3): 46~50
Wu CH (吴存浩). 中国农业史. Beijing, China (北京). 警官教育出版社, 1996. 554
Rochester IJ, Peoples MB, Hulugalle NR, Gault RR and Constable GA. Using legumes to enhance nitrogen fertility and improve soil condition in cotton cropping systems. Field Crops Res, 2000, 70: 27~41
Glasener KM, Wagger MG, MacKown CT, Volk RJ. Contributions of shoot and root nitrogen-15 labeled legume nitrogen sources to a sequence of three cereal crops. Soil Sci Soc Am J, 2002, 66: 523~530
Peoples MB, Craswell ET. Biological nitrogen fixation: investments, expectations and actual contributions to agriculture. Plant & Soil, 1992, 141: 13~39
Nuruzzaman M, Lambers H, Bolland M DA, Veneklaas EJ. Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. Plant & Soil, 2005, 271: 175~187
Stevenson FC, Van KC. A landscape-scale assessment of the nitrogen and non-nitrogen benefits of pea in a crop rotation. Soil Sci Soc Am J, 1996, 60: 1797~1805
Wang LG (汪立刚), Liang YC (梁永超). Soil fertility improvement, soil and water conservation, and eco-environmental and economic benefit as affected by crop/forage intercropping in sloping arable lands. Chin Agric Sci Bull (生态农业科学), 2008, 24 (10): 482~486
Bullock DG. Crop rotation. Crit Rev Plant Sci, 1992, 11: 309~226
Hobbs JA. Yields and protein contents of crops in various rotations. Agron J, 1971, 63: 832~836
Peoples MB, Bowman AM, Gault RR, Herridge DF, McCallum MH, McCormick KM, Norton RM, Rochester IJ, Scammell GJ, Schwenke GD. Factors regulating the contributions of fixed nitrogen by pasture and crop legumes to different farming systems of eastern Australia. Plant &Soil, 2001, 228: 29~41
Tingle CH, Chandler JM. The effect of herbicides and crop rotation on weed control in glyphosate-resistant crops. Weed Technol, 2004, 18: 940~946
Sivcev I, Stankovic S, Kostic M, Lakic N, Popovic Z. Population density of Diabrotica virgifera virgifera LeConte beetles in Serbian first year and continuous maize fields. J Appl Entomol, 2009, 133: 430~437
Bolton EF, VA Dirks, Aylesworth WA. Some effects of Alfalfa, Fertilizer and Lime on corn yield in rotations on Clay soil during a range of seasonal moisture conditions. Soil Sci, 1976, 56: 21~25
Hesterman OB, Sheaffer CC, Barnes DK, Lueschen WE, Ford JH. Alfalfa dry matter and nitrogen production, and fertilizer nitrogen response in Legume-Corn rotations. Agronomy, 1986, 78: 19~23
Fyson A, Oaks A. Growth promotion of maize by legume soil. Plant & Soil, 1990, 122: 259~266
Zanetti S, Hartwig UA, Lüscher A, Hebeisen T, Frehner M, Fischer BU, Hendrey GR, Blum H, Nosberger J. Stimulation of symbiotic N2 fixation in Trifolium repens L. under elevated atmospheric pCO2 in a grassland ecosystem. Plant Physiol, 1996, 112: 575~583
Dong Z, Layzell DB. Why do legume nodules evolve hydrogen gas? In: Finan TM, O’Brian MR, Layzell DB, Vessey JK, Newton W eds. Nitrogen Fixation Global Perspectives. Wallingford: CABI Publishing, 2002. 331~335
Phelps AS, Wilson PW. Occurrence of hydrogenase in nitrogen-fixing organisms. Proc Soc Exp Biol, 1941, 47: 473~476
Zhu JL (朱建良), Feng YZ (冯有智). Hydrogen production mechanism of nitrogen fixation microbe. J Nanjing Univ Technol (南京工业大学学报自然科学版), 2003, 25 (1): 102~106
Hunt S, Layzell DB. Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu Rev Plant Physiol Mol Biol, 1993, 44: 483~511
Dong Z, Layzell DB. H2 oxidation, O2 uptake and CO2 fixation in hydrogen treated soils. Plant & Soil, 2001, 229: 1~12
Nelson LM, Salminen SO. Uptake hydrogenase activity and ATP formation in rhizobium leguminosarum bacteroids. J Bacteriol, 1982, 151 (2): 989~995
Dixon ROD. Hydrogenase in legume root nodule bacteroids: occurrence and properties. Arch Microbiol, 1972, 85: 193~201
Benson DR, Arp DJ, Burris RH. Hydrogenase in actinorhizal root nodules and root nodule homogenates. J Bacteriol, 1980, 142 (1): 138~144
Conrad R, Seiler W. Field measurements of hydrogen evolution by nitrogen-fixing legumes. Soil Biol Biochem, 1979a, 11: 689~690
Conrad R, Seiler W. The role of hydrogen bacteria during the decomposition of hydrogen by soil. FEMS Microbiol Let, 1979b, 6: 143~145
Conrad R, Seiler W. Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget. J Geophys Res, 1980, 85: 5493~5498
Uratsu SL, Keyser HH, Weber DF, Lim ST. Hydrogen uptake (HUP) activity of Rhizobium japonicum form major U.S. soybean production areas. Crop Sci, 1982, 22: 600~602
Dong Z, Wu L, Kettlewell B, CaldwellCD, Layzell DB. Hydrogen fertilization of soils—is this a benefit of legumes in rotation?. Plant Cell & Environ, 2003, 26: 1875~1879
Dean C, Sun W, Dong Z, Caldwell CD. Soybean nodule hydrogen metabolism affects soil hydrogen uptake and growth of rotation crops. Can J Plant Sci, 2006, 86: 1355~1359
McLearn N, Dong Z. Microbial nature of the hydrogen oxidizing agent in hydrogen treated soil. Biol Fertil Soil, 2002, 35: 465~469
Irvine P, Smith M, Dong Z. Hydrogen fertilizer: bacteria or fungi? Acta Horticult, 2004, 631: 239~242
Aragno M, Schlegel HG, Starr MP, Stolp H, Truper HG. The Prokaryotes-A Handbook on Habitats, Isolation and Identification of Bacteria. New York, USA: Spring-Verlag, 1981. 865~893
Maimaiti J. Isolation and characterization of H2 oxidizing bacteria in H2 treated soil and soil adjacent to Hup soybean nodules: [Master Degree Dissertation]. Saint Mary’s University, Halifax, NS, Canada, 2005
Maimaiti J, Zhang Y, Yang J, Cen YP , Layzell DB, Peoples M, Dong Z. Isolation and characterization of hydrogen-oxidizing bacteria induced following exposure of soil to hydrogen gas and their impact on plant growth. Environ Microbiol, 2007, 9: 435~444
Chen XD (陈兴都), Wang WW (王卫卫), Guo LW (郭立伟). Isolation, screening and characterization of hydrogen-oxidizing bacteria in soybean rhizosphere. Chin J Appl Ecol (应用生态学报), 2007, 18 (9): 2069~2074
Kliber HD, Lechner S, Cornad R. Characterization of populations of aerobic hydrogen-oxidizing soil bacreria. FENS Microbiol Ecol, 1995, 16: 167~176
Lechner S, Conrad R. Detection in soil of aerobic hydrogen-oxidizing bacteria related to Alcaligenes eutrophus by PCR and hybridization assays targeting the gene of the membrane- bound (NiFe) hydrogenase. FEMS Microbiol Ecol, 1997, 22: 193~206
Zhang Y, He X, Dong Z. Effect of hydrogen on soil bacterial community structure in two soils as determined by terminal restriction fragment length polymorphism. Plant & Soil, 2009, 320: 295~305
Golding A, Dong Z. Hydrogen production by nitrogenase as a potential crop rotation Benefit. Environ Chem Lett, 2010, 8: 101~121
Freidrich B, Schwartz E. Molecular biology of hydrogen utiliztion in aerobic chemolithotrophs. Annu Rev Microbiol, 1993, 47: 351~383
Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey’s Manual of Determinative Bacteriology. Baltimore: Williams & Wilkins, 1994
Chen XD (陈兴都), Wang WW (王卫卫), Fu B (付博), Xiao LM (肖黎明), Guo Y (郭燕). Growth promoting effect of hydrogen-oxidizing bacteria in soybean rhizosphere. Acta Bot Bor-Occid Sin (西北植物学报), 2008, 28 (1): 136~140
Haring V, Kluber HD, Conrad R. Localization of atmospheric H2-oxidizing soil hydrogenases in different particle fractions of soi. Biol Fert Soil, 1994, 18: 109~114
Ma YX (马悦欣), Carola H, Jeremy W, Staffan K. Application of denaturing gradient gel electrophores is (DGGE) in microbial ecology. Acta Ecol Sin (生态学报), 2003, 23 (8): 1561
Lee DH, Zo YG, Kim SJ. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-stand-conformation polymorphism. Appl Microbiol, 1996, 62: 3112~3120
Deng MY (邓墨渊), Wang BC (王伯初), Yang ZC (杨再昌), Wang L (王黎). The application of techniques of molecular biology in classification and identification of endophytes. Amino Acids & Biotic Resour (氨基酸和生物资源), 2006, 28 (3): 9~14
Stein S, Selesi D, Schilling R, Pattis I, Schmid M, Hartmann A. Microbial activity and bacterial composition of H2-treated soils with net CO2 fixation. Soil Biol Biochem, 2005, 37: 1938~1945
Taiz L, Zeiger E. Plant Physiology. Redwood: Benjamin/Cummings Publishing Company, 1991. 565
Hunter WJ. Ethylene production by root nodules and effect of ethylene on nudulation in Glycine max. Appl Environ Microbiol, 1993, 59 (6): 1947~1950
Shah S, Li J, Moffatt BA, Glick BR. Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol, 1998, 44: 833~843
Wei J (卫军), Qi L (其林), Zhang YQ (张永清), Qiu BS (邱并生), Cai MY (蔡妙英). Isolation and identification of soil bacteria containing ACC deaminase. Chin Biodiv (生物多样性), 1994, 2 (1): 29~32
Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K. Rhizobitoxine modulates plant-microbe interactions by ethylene inhibition. Biotechnol Adv, 2006, 24: 382~388
Marcia AH, Peter BK. Hormonal regulation of lateral bud (tiller) release in oats. Plant Physiol, 1980, 66: 1123~1127
Wang GY, Volker R, Li CJ, Bangerth F. Involvement of auxin and CKs in boron deficiency induced changes in apicak dominance of pea plants. J Plant Physiol, 2006, 163: 591~600
Li CX (李春喜), Zhao GC (赵广才), Dai XM (代西梅), Jiang LN (姜丽娜), Shang YL (尚玉磊). Research on the relationship between wheat tillering dynamics and endogenous hormone. Acta Agron Sin (作物学报), 2000, 26 (6): 963~968
Anger RHM, Prasad PC, Laude HM. Effects of kinetin on tiller bud elongation in wheat (Triticum aestivum L.). Ann Bot, 1973, 37: 565~571
Patten C, Glick B. Role of Pseudomonas putidaindoleacetic acid in development of the host plant root system. Appl Environ Microbiol, 2002, 68: 3795~3801
Selvadurai EL, Brown AE, Hamilton JTG. Production of indole-3-acetic acid analogues by strains of Bacillus cereus in relation to their influence on seedling development. Soil Biol Biochem, 1991, 23: 401~403
Lebuhn M, Heulin T, Hartmann A. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol, 1997, 22: 325~334
Arkhipova TN, Veselov SU, Melentiev AI, Mertynenko EV, Kudoyarova GR. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant & Soil, 2005, 272: 201~209
Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW. Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA, 2003, 100: 4927~4932
Yasar E, Sezai E, Ayhan H, Ramazan C. Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biol Res, 2010, 43: 91~98
Gan S, Amoasino RM. Inhibition of leaf senescence by auto-regulated production of cytokinin. Science, 1995, 270: 1986~1988
Fu YC (付永彩), Ding YY (丁月云), Liu XF (刘新仿), Sun CQ (孙传清), Cao SY (曹守云), Wang DJ (王东江), He SJ (何锶洁), Wang XK (王象坤), Li LC (李良才), Tian WZ (田文忠). 抑制衰老的嵌合基因在水稻中的转化. Chin Sci Bull (科学通报), 1998, 43 (18): 1963~1967
Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmidt M, van Breusegem F, Eberl L. Induction of systemic plant resistance by N-acylhomoserine lactone-producing rhizosphere bacteria. Plant Cell Environ, 2006, 29: 909~918
Mohammad SK, Almas Z, Parvaze AW, Mohammad O. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett, 2009, 7: 1~19
Gabriele B. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol, 2009, 84: 11~18
Hynes RK, Leung GCY, Hirkala DLM, Nelson LM. Isolation, selection, and characterization of bene?cial rhizobacteria from pea, lentil, and chickpea grown in western Canada. Can J Microbiol, 2008, 54 (4): 248~258
Borneman J, Skroch PW, O’Sullivan KM, Palus JA, Rumjanek NG, Jansen JL, Nienhuis J, Triplett EW. Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol,1996, 62: 1935~1943
Zwolinski MD. DNA sequencing: strategies for soil microbiology. Soil Sci Soc Am J, 2007, 71: 592~600
Siezen RJ, Wilson G, Todt T. Prokaryotic whole-transcriptome analysis: deep sequencing and tiling arrays. Microbial Biotechnol, 2010, 3: 125~130

备注/Memo

备注/Memo:
加拿大国家自然科学和工程研究基金资助
更新日期/Last Update: 2012-10-26