|本期目录/Table of Contents|

[1]王绍良,崔志松,郑立,等.Porphyrobacter sp. D22F的降解特性及其在石油降解菌群中的生态位[J].应用与环境生物学报,2012,18(01):122-127.[doi:10.3724/SP.J.1145.2012.00122]
 WANG Shaoliang,CUI Zhisong,ZHENG Li,et al.Characterization of PAHs-degrading Bacterium Porphyrobacter sp. D22F and Its Ecological Niche in Oil-degrading Consortium D22-1[J].Chinese Journal of Applied & Environmental Biology,2012,18(01):122-127.[doi:10.3724/SP.J.1145.2012.00122]
点击复制

Porphyrobacter sp. D22F的降解特性及其在石油降解菌群中的生态位()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
18卷
期数:
2012年01期
页码:
122-127
栏目:
研究论文
出版日期:
2012-02-25

文章信息/Info

Title:
Characterization of PAHs-degrading Bacterium Porphyrobacter sp. D22F and Its Ecological Niche in Oil-degrading Consortium D22-1
作者:
王绍良崔志松郑立高伟李倩
(1青岛科技大学化工学院 青岛 266042)
(2国家海洋局第一海洋研究所海洋生态研究中心 青岛 266061)
Author(s):
WANG Shaoliang CUI Zhisong ZHENG Li GAO Wei LI Qian
(1College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, Shandong, China)
(2Marine Ecology Research Center, the First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, Shandong, China)
关键词:
多环芳烃产卟啉杆菌属生物降解起始双加氧酶优势菌生态位
Keywords:
polycyclic aromatic hydrocarbons Porphyrobacter biodegradation initial dioxygenase dominant species ecological niche
分类号:
X172 : Q938.15
DOI:
10.3724/SP.J.1145.2012.00122
文献标志码:
A
摘要:
为揭示多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)降解微生物资源的多样性和石油降解菌群的优势菌,研究了从南海沉积物中分离得到的一株PAHs降解菌D22F的降解特性及其在石油降解菌群D22-1中的生态位. 对菌株D22F进行16S rRNA基因同源性分析及透射电镜观察以初步确定其种属,通过培养法、气相色谱质谱联用(GC-MS)测定其多环芳烃降解范围和降解率,通过简并引物PCR扩增其PAHs双加氧酶大亚基基因片段并进行系统发育分析,采用变性梯度凝胶电泳(DGGE)监测石油降解菌群中的优势菌. 结果表明,与菌株D22F的16S rRNA基因相似度最高的模式株为产卟啉杆菌属Porphyrobacter tepidarius DSM 10594T(AF465839;98.55%). 该菌株能降解萘、甲基萘、苊、硫芴、菲、蒽等;对初始浓度为0.2 g/L菲10 d后的降解率可达90%以上. 从其基因组DNA中克隆到的PAHs起始双加氧酶大亚基基因phnAc与Novosphingobium aromaticivorans DSM 12444中的质粒pNL1(CP000676)上的bphA1f基因相似度最高,达到99.41%. DGGE谱图显示,菌株D22F是石油降解菌群中的3种优势菌之一,在传代菌群中可稳定存在. Porphyrobacter sp. D22F为产卟啉杆菌属(Porphyrobacter)中首株以低分子量PAHs为唯一碳源和能源的菌株,是石油降解菌群的优势菌. 图4 表1 参21
Abstract:
In order to explore the diversity of microbial resources which could degrade polycyclic aromatic hydrocarbons (PAHs), and dominant species in oil-degrading consortium, the PAHs-degrading capability of strain D22F isolated from the sediment of South China Sea and its ecological niche in the oil-degrading consortium D22-1 were studied. Strain D22F was identified by 16S rRNA gene sequences homology analysis and transmission electron micrograph (TEM). The sphere and rate of PAHs degradation by stain D22F were determined by cultivation experiments and gas chromatography-mass spectrometry (GC-MS), respectively. The phnAc gene encoding the large subunit of PAHs dioxygenase was obtained by PCR amplification with degenerate primers and then analysed phylogenetically. Besides, the dominant species of oil-degrading consortium D22-1 was determined by denatured gradient gel electrophoresis (DGGE) analysis. The results indicated that strain D22F was closely related to type strain Porphyrobacter tepidarius DSM10594T (AF465839), with 98.55% 16S rRNA gene similarity. It could degrade naphthalene, methylnaphthalene, acenaphthene, dibenzothiophene, phenanthrene and anthracene. Strain D22F was used to degrade phenanthrene (0.2 g/L) and the degradation efficiency was above 90% after ten days of incubation. The phnAc gene cloned from genome of strain D22F exhibited 99.41% similarity with the gene bphA1f located on plasmid pNL1 (CP000676) of Novosphingobium aromaticivorans DSM12444. Furthermore, DGGE analysis indicated that strain D22F was one of the three dominant species of oil-degrading consortium D22-1 and its abundance kept stable in the sequential subcultures. These research results suggested that strain D22F played an important role in ecological niche of oil-degrading consortium D22-1.
Fig 4, Tab 1, Ref 21

参考文献/References:

1 Baird C. Environmental Chemistry. New York, USA: WH. Freeman and Company Press, 1995. 276~278
2 Gao XS (高学晟), Jiang X (姜霞), Ou ZQ (区自清). Behaviors of polycylic aromatic hydrocarbons (PAHs) in the soil. Chin J Appl Ecol (应用生态学报), 2002, 13 (4): 501~504
3 Gibson DT, Mahadevan V, Jerina RM, Yogi H, Yeh HJ. Oxidation of the carcinogens benzo [a] pyrene and dibenz [a,h] anthracene to dihydrodiols by a bacterium. Science, 1975, 189: 295~297
4 Xia Y (夏颖), Min H (闵航). Identification, cloning and sequencing of GST gene of bacterium degrading poly aromatic hydrocarbons. Acta Microbiol Sin (微生物学报), 2003, 43 (6): 691~696
5 Ollivier B, Magot M, Prince RC. Petroleum Microbiology. Washington DC, USA: American Society for Microbiology Press, 2005. 317~336
6 Fuerst J, Hawkins J, Holmes A, Sly L, Moore C, Stackebrandt E. Polphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from fresh water.Int J Syst Bacteriol, 1993, 43 (1): 125~134
7 Hanada S, Kawase Y, Hilaishi A, Takaichi S, Matsuura K, Shimada K, Nagashima KVP. Porphyrobacter tepidarius sp. nov., a moderately thermophilic aerobic photosynthetic bacterium isolated from a hot spring. Int J Syst Bacteriol, 1997, 47 (2): 408~413
8 Rainey FA, Silva J, Nobre MF, Silva MT, Da Costa MS. Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a-containing species. Int J Syst Evol Micr, 2003, 53: 35~41
9 Yoon JH, Lee MH, Oh TK. Porphyrobacter donghaensis sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Micr, 2004, 54: 2231~2235
10 Hiraishi A, Yonemitsu Y, Matsushita M, Shin YK, Kuraishi H, Kawahara K. Characterization of Porphyrobacter sanguineus sp. nov., an aerobic bacteriochlorophyll-containing bacterium capable of degrading biphenyl and dibenzofuran. Arch Microbiol, 2002, 178: 45~52
11 Cui ZS, Zheng L, Yang BJ, Liu Q, Gao W, Han P, Wang SL, Zhou WJ, Zheng MG, Tian L. Synergic effect of marine obligate hydrocarbonoclastic bacteria in oil biodegradation. Acta Microbiol Sin (微生物学报), 2010, 50 (3): 350~359
12 Cui ZS (崔志松), Shao ZZ (邵宗泽). Predominant strains of polycyclic aromatic hydrocarbon-degrading consortia from deep sea of the middle Atlantic ridge. Acta Microbiol Sin (微生物学报), 2009, 49 (7): 902~909
13 Cui ZS (崔志松), Shao ZZ (邵宗泽). Characterization of a PAHs degrading marine strain Novosphingobium sp. Phe-8 and its degradative genes. J Xiamen Univ Nat Sci (厦门大学学报自然科学版), 2006, 45: 257~261
14 Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrickson JK, Saffer JD. Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol, 1999, 181 (5): 1585~1602
15 Yuan J (袁军), Lai QL (赖其良), Zheng TL (郑天凌), Shao ZZ (邵宗泽). Polycyclic aromatic hydrocarbon-degrading bacterium Novosphingobium sp. H25 isolated from deep sea and its degrading genes. Acta Microbiol Sin (微生物学报), 2008, 48 (9): 1208~1213
16 Schuler L, Jouanneau Y, Chadhain SM, Meyer C, Pouli M, Zylstra GJ, Hols P, Agathos SN. Characterization of a ring-hydroxylating dioxygenase from phenanthrene-degrading Sphingomonas sp. strain LH128 able to oxidize benz [a] anthracene. Appl Microbiol Biol, 2009, 83 (3): 465~475
17 Garrity G, Brenner DJ, Krieg NR, Staley JT. Bergey’s Manual of Systematic Bacteriology. 2nd ed. New York, USA: Springer, 2005, 2 (Part C): 230~286
18 Gong ZQ (巩宗强), Li PJ (李培军), Wang X (王新), Zhang HR (张海荣), Song YF (宋玉芳). Co-metabolic degradation of pyrene in soil. Chin J Appl Ecol (应用生态学报), 2001, 12 (3): 447~450
19 Sun Y (孙艳), Qian SJ (钱世钧). Advance on the studies of biodegradation of aromatic compounds. Prog Biotechnol (生物工程进展), 2001, 21 (1): 42~46
20 Yakimov MM, Timmis KN, Golyshin PN. Obligate oil-degrading marine bacteria. Curr Opin Biotech, 2007, 18: 257~266
21 Head IM, Jones DM, Röling WFM. Marine microorganisms make a meal of oil. Nat Rev Microbiol, 2006, 4: 173~182

相似文献/References:

[1]卢晓霞,吴淑可,侯珍,等.焦化厂污染土壤中多环芳烃降解菌的分离及降解特性[J].应用与环境生物学报,2011,17(05):722.[doi:10.3724/SP.J.1145.2011.00722]
 LU Xiaoxia,WU Shuke,HOU Zhen,et al.Isolation and Degrading Properties of PAHs-Degrading Bacteria from the Contaminated Soil of a Coking Plant[J].Chinese Journal of Applied & Environmental Biology,2011,17(01):722.[doi:10.3724/SP.J.1145.2011.00722]
[2]朱林海,丁金枝,王健健,等.石油污染对土壤–植物系统的生态效应[J].应用与环境生物学报,2012,18(02):320.[doi:10.3724/SP.J.1145.2012.00320]
 ZHU Linhai,DING Jinzhi,WANG Jianjian,et al.Ecological Effects of Oil Pollution on Soil - Plant System[J].Chinese Journal of Applied & Environmental Biology,2012,18(01):320.[doi:10.3724/SP.J.1145.2012.00320]
[3]廖 丹 黄华斌 庄峙厦 洪有为**.多环芳烃(PAHs)污染对滨海湿地入侵植物互花米草的影响[J].应用与环境生物学报,2018,24(04):1.[doi:10.19675/j.cnki.1006-687x.2018.03021]
 LIAO Dan,HUANG Huabin,ZHUANG Shixia,et al.A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on invasive plant Spartina alterniflora in coastal wetland[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):1.[doi:10.19675/j.cnki.1006-687x.2018.03021]

备注/Memo

备注/Memo:
国家自然科学基金项目(Nos. 40906062,41076108)、公益性行业科研专项经费项目(No. 200705011)、国家海洋局海洋科学青年基金(No. 2009114)和海洋一所基本科研业务费专项资金(No. 2010G23)资助
更新日期/Last Update: 2012-02-29