|本期目录/Table of Contents|

[1]徐立杰,郭春艳,彭永臻,等.强化生物除磷系统的微生物学及生化特性研究进展[J].应用与环境生物学报,2011,17(03):427-434.[doi:10.3724/SP.J.1145.2011.00427]
 XU Lijie,GUO Chunyan,PENG Yongzhen,et al.Review on the Microbiological and Biochemical Characteristics of Enhanced Biological Phosphorus Removal System[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):427-434.[doi:10.3724/SP.J.1145.2011.00427]
点击复制

强化生物除磷系统的微生物学及生化特性研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
17卷
期数:
2011年03期
页码:
427-434
栏目:
综述
出版日期:
2011-06-24

文章信息/Info

Title:
Review on the Microbiological and Biochemical Characteristics of Enhanced Biological Phosphorus Removal System
作者:
徐立杰郭春艳彭永臻袁志国
(1北京工业大学环境与能源工程学院 北京 100124)
(2澳大利亚昆士兰大学高级废水管理中心 布里斯班 4072)
Author(s):
XU Lijie GUO Chunyan PENG Yongzhen YUAN Zhiguo
(1Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)
(2Advanced Wastewater Management Centre, University of Queensland, Brisbane 4072, Australia)
关键词:
强化生物除磷聚磷菌聚糖菌反硝化聚磷菌还原力
Keywords:
enhanced biological phosphorus removal poly-phosphate accumulating organism glycogen accumulating organism denitrifying PAOs reducing power
分类号:
X172 : X703
DOI:
10.3724/SP.J.1145.2011.00427
文献标志码:
A
摘要:
综述了强化生物除磷(Enhanced biological phosphorus removal,EBPR)系统的微生物学和生化特性两方面的最新研究进展. 在微生物学方面,归纳了EBPR系统中的主要微生物——聚磷菌、聚糖菌、反硝化聚磷菌的分类及相互之间的竞争和联系. 具有聚磷功能的微生物种类繁多,目前普遍认为Accumulibacter是一种典型的聚磷菌,在各种规模的EBPR系统中均不同程度的存在. 关于聚磷菌和聚糖菌的联系、反硝化聚磷菌的分类问题存在争论. 在生化特性方面,归纳了聚磷菌体内三大聚合物——糖原、聚β-羟基烷酸脂和聚合磷酸盐与聚磷菌代谢功能的关系. 聚磷菌厌氧阶段的还原力由糖酵解和有机底物TCA循环共同提供,其比例受种群结构和实验条件影响. 糖原根据不同菌株厌氧阶段的降解途径有所不同,但是对细胞都起到调节氧化平衡的作用. 聚β-羟基烷酸脂的组成由有机底物决定,丙酸为底物时4种单体均可检测出来. 聚磷菌厌氧释磷的能量来自聚磷分解和糖原分解,耗能受环境条件影响. 图5 表3 参37
Abstract:
The microbiological and biochemical characteristics of enhanced biological phosphorus removal (EBPR) process was summarized. With respect to the microbiology, the competition and relationship among the main microbes in the system, including poly-phosphate accumulating organisms (PAOs), glycogen accumulating organisms (GAOs) and denitrified PAOs (DPAOs) were concluded. A wide variety of PAOs were separated from the EBPR system and the Accumulibacter was considered a typical PAO, existing in all kinds of EBPR systems. There was still controversy concerning the relationship between PAOs and GAOs and the classification of DPAOs. With respect to the biochemistry, the relevance between the intracellular polymers and the metabolic function was concluded. The reducing power in the anaerobic phase was provided both by the TCA circulation and the glycolysis process, influenced by the population structure and experiment condition. The degradation of glycogen was different when the bacterial strain was different and the glycogen was the regulator of the redox equilibrium in the cell. The composition of poly-β-hydroxyalkanoates (PHAs) was determined by the organic substrate, and when propionic acid was the substrate, four monomers of PHAs could be detected. The power used in the anaerobic P-releasing was derived from the decomposition of polyphosphate and glycogen, while the amount of power needed was influenced by experiment condition. Fig 5, Tab 3, Ref 37

参考文献/References:

1 Zhou KX (周可新),Xu MQ (许木启),Cao H (曹宏). Review on the microbiology of the biological phosphorus removal system. Chin J Appl Environ Biol (应用与环境生物学报), 2005, 11 (5): 638~641
2 Ahn J, Schroeder S, Beer M, McIlroy S, Bayly RC, May JW, Vasiliadis G, Seviour RJ. Ecology of the microbial community removing phosphate from wastewater under continuously aerobic conditions in a sequencing batch reactor. Appl Environ Microbiol, 2007, 73 (7): 2257~2270
3 Kong YH, Nielsen JL, Nielsen PH. Microautoradiographic study of Rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol, 2004, 70 (9): 5383~5390
4 Oehmen A, Lemos PC, Carvalho G, Yuan ZG, Keller J, Blackall LL, Reis MAM. Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Res, 2007, 41 (11): 2271~2300
5 Seviour RJ, Mino T, Onuki M. The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev, 2003, 27 (1): 99~127
6 Tandoi V, Majone M, May J, Ramadori R. The behaviour of polyphosphate accumulating Acinetobacter isolates in an anaerobic:Aerobic chemostat. Water Res, 1998, 32: 2903~2912
7 Mino T, Van Loosdrecht MCM, Heijnen JJ. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res, 1998, 32 (11): 3193~3207
8 Nakamura K, Hiraishi A, Yoshimi Y, Kawaharasaki M,Masuda K, Kamagata Y. Microlunatus phosphovorus gen-nov, sp-nov, a new gram-positive polyphosphate-accumulating bacterium isolated fromactivated-sludge. Int J Syst Bacteriol, 1995, 45 (1): 17~22
9 Stante L, Cellamare CM, Malaspina F, Bortone G, Tilche A. Biological phosphorus removal by pure culture of Lampropedia spp. Water Res,1997, 31 (6): 1317~1324
10 Hesselmann RPX, Werlen C, Hahn D, van der Meer JR, Zehnde AJB. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst Appl Microbiol , 1999, 22 (3): 454~465
11 Lee N, Janssen JL, Aspegren H, Henze M, Nielsen PH, Wanger M. Population dynamics in wastewater treatment plants with enhanced biological phosphorus removal operated with and without nitrogen removal. Water Sci Technol, 2002, 46 (1~2): 163~170
12 Kong YH, Nielsen JL, Nielsen PH. Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants. Appl & Environ Microbiol, 2005, 71 (7): 4076~4085
13 Bond PL, Erhart R, Wagner M, Keller J, Blackall LL. Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. Appl Environ Microbiol, 1999, 65 (9): 4077~4084
14 Hesselmann RPX, Werlen C, Hahn D, van der Meer JR, Zehnder AJB. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst Appl Microbiol, 1999, 22 (3): 454~465
15 Liang CM, Hung CH, Hsu SC, Yeh IC. Purple nonsulfur bacteria diversity in activated sludge and its potential phosphorus accumulating ability under different cultivation conditions. Appl Microb & Biotechnol, 2010, 86 (2): 709~719
16 Onuki M, Satoh H, Mino T. Analysis of microbial community that performs enhanced biological phosphorus removal in activated sludge fed with acetate. Water Sci Technol, 2002, 46 (1~2): 145~153
17 Spring S, Wagner M, Schumann P, Kampfer P. Malikia granosa gen. nov., sp. nov., a novel polyhydroxyalkanoate- and polyphosphate-accumulating bacterium isolated from activated sludge, and reclassi?cation of Pseudomonas spinosa as Malikia spinosa comb. nov. Intern J Syst & Evol Microbiol, 2005, 55 (2): 621~629
18 Maszenan AM, Seviour RJ, Patel BKC, Schumann P, Burghardt J, Tokiwa Y, Stratton HM. Three isolates of novel polyphosphate-accumulating Gram-positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp. nov.and Tetrasphaera australiensis sp. nov. Intern J Syst & Evol Microbiol, 2000, 50 (2): 593~603
19 Seviour RJ, Mclllroy S. The microbiology of phosphorus removal in activated sludge processes- the current state of play. J Microbiol, 2008, 46 (2): 115~124
20 Crocetti GR, Hugenholtz P, Bond PL, Schuler A, Keller J, Jenkins D, Blackall LL. Identi?cation of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol, 2000, 66 (3): 1175~1182
21 Zilles JL, Peccia J, Kim MW, Hung CH, Noguera DR. Involvement of rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants. Appl & Environ Microbiol, 2002, 68(6): 2763~2769
22 Lu HB, Oehmen A, Virdis B, Keller J, Yuan ZG. Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. Water Res, 2006, 40 (20): 3838~3848
23 You Y (由阳), Peng Y (彭轶), Yuan ZG (袁志国), Li XY (李夕耀), Peng YZ (彭永臻). Cultivation and characteristic of aerobic granular sludge enriched by phosphorus accumulating organisms. J Environ Sci (环境科学), 2008,33 (8): 2242~2248
24 He S, Gu AZ, McMahon KD. Progress toward understanding the distribution of Accumulibacter among full-scale enhanced biological phosphorus removal systems. Microb Ecol, 2008, 55 (2): 229~236
25 Crocetti GR, Ban?eld JF, Keller J, Bond PL, Blackall LL. Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology-SGM, 2002, 148 (11): 3353~3364
26 Beer M, Kong YH, Seviour RJ. Are some putative glycogen accumulating organisms (GAO) in anaerobic: Aerobic activated sludge systems members of the a-Proteobacteria? Microbiology, 2004, 150 (7): 2267~2275
27 Wong MT, Tan FM, Ng WJ, Liu WT. Identi?cation and occurrence of tetrad-forming Alphaproteobacteria in anaerobic–aerobic activated sludge processes. Microbiology, 2004, 150 (11): 3741~3748
28 Ahn CH, Park HD, Lee YO, Park JK. Appearance of novel G-bacteria belonging to Acidobacteria in a dairy wastewater treatment plant. Environ Technol, 2008, 29 (5): 497~504
29 Carvalho G, Lemos PC, Oehmen A, Reis MAM. Denitrifying phosphorus removal: linking the process performance with the microbial community structure. Water Res, 2007, 41 (19): 4383~4396
30 Martin HG, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC, Yeates C, He SM, Salamov AA,Pangilinan JL, Rigoutsos I, Kyrpides NC, Blackall LL, McMahon KD, Hugenholtz P. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol, 2006, 24 (10): 1263~1269
31 Zhou Y, Pijuan M, Oehmen A, Yuan ZG. The source of reducing power in the anaerobic metabolism of polyphosphate accumulating organisms(PAOs) – a mini-review. Water Sci & Technol, 2010, 61 (7): 1653~1662
32 Zhou Y, Pijuan M, Zeng RJ, Yuan ZG. Involvement of the TCA cycle in the anaerobic metabolism of polyphosphate accumulating organisms (PAOs). Water Res, 2009, 43 (5): 1330~1340
33 Pijuan M, Oehmen A, Baeza JA, Casas C, Yuan ZG. Characterising the biochemical activity of full-scale enhanced biological phosphorus removal systems: A comparison with metabolic models. Biotechnol Bioeng, 2008, 99 (1): 170~179
34 Hesselmann RPX, Von Rummell R, Resnick SM, Hany R, Zehnder AJB. Anaerobic metabolism of bacteria performing enhanced biological phosphate removal. Water Res, 2000, 34 (14): 3487~3494
35 Pijuan M, Casas C, Baeza JA. Polyhydroxyalkanoate synthesis using different carbon sources by two enhanced biological phosphorus removal microbial communities. Proc Biochem, 2009, 44 (1): 97~105
36 Li XY (李夕耀), Peng YZ (彭永臻), Wang SY (王淑莹), You Y (由阳), Guo CY (郭春艳). Anaerobic metabolic model of uptaking acetate and propionate by polyphosphate accumulating organisms. J Environ Sci & Manage (环境科学与管理), 2008, 33 (8): 37~42
37 Smolders GJF, Vandermeij J, Vanloosdrecht MCM, Heijnen JJ. Model of the anaerobic metabolism of the biological phosphorus removal process; stoichiometry and pH influence. Biotech Bioeng, 1994, 43 (6): 461~470

相似文献/References:

[1]伍思宇 周志如 尤 青 张文飞 徐 达 李特伦 姚 琦 张起畅 吴红萍 王锐萍?.海南东寨港红树林聚磷菌的筛选及其特性?[J].应用与环境生物学报,2016,22(03):397.[doi:10.3724/SP.J.1145.2015.11026]
 WU Siyu,ZHOU Zhiru,YOU Qing,et al.Screening and characterization of soil phosphate accumulating bacteria from Dongzhaigang mangrove wetlands in Hainan, China*[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):397.[doi:10.3724/SP.J.1145.2015.11026]
[2]佘晨兴,王静 苏玉萍,等.三十六脚湖水库沉积物聚磷菌多样性及群落组成[J].应用与环境生物学报,2018,24(06):1.[doi:10.19675/j.cnki.1006-687x.2018.03001]
 SHE Chenxing,WANG Jing,et al.Diversity and community composition of phosphorus accumulating organisms(PAOs) in the sediments of Sanshiliujiao Lake reservoir *[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):1.[doi:10.19675/j.cnki.1006-687x.2018.03001]

备注/Memo

备注/Memo:
“十一五”国家科技支撑计划重点项目(No. 2006BAC19B03)资助
更新日期/Last Update: 2011-06-23