|本期目录/Table of Contents|

[1]李凝玉,卢焕萍,李志安,等.籽粒苋对土壤中镉的耐性及积累特征研究[J].应用与环境生物学报,2010,16(01):28-32.[doi:10.3724/SP.J.1145.2010.00028]
 LI Ningyu,LU Huanping,LI Zhian,et al.Cadmium tolerance and accumulation in Amaranthus hypochondriacus L.[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):28-32.[doi:10.3724/SP.J.1145.2010.00028]
点击复制

籽粒苋对土壤中镉的耐性及积累特征研究()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
16卷
期数:
2010年01期
页码:
28-32
栏目:
研究论文
出版日期:
2010-02-25

文章信息/Info

Title:
Cadmium tolerance and accumulation in Amaranthus hypochondriacus L.
作者:
李凝玉卢焕萍李志安庄萍邱静
1中国科学院华南植物园 广州 510650
2中国科学院研究生院 北京 100049
Author(s):
LI Ningyu LU Huanping LI Zhi’an ZHUANG Ping QIU Jing
(1South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China)
(2Graduate University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
籽粒苋植物修复耐性重金属超富集植物
Keywords:
Amaranthus hypochondriacus L. cadmium phytoremediation tolerance heavy metal hyperaccumulator
分类号:
X53 : X173
DOI:
10.3724/SP.J.1145.2010.00028
文献标志码:
A
摘要:
籽粒苋是一种生物量大、易栽培的镉(Cd)富集植物,具有作为Cd污染土壤修复植物的潜力. 比较了两个基因型籽粒苋(K112和R104)的耐Cd性特征,土壤Cd污染浓度范围是0~50 mg kg-1,生长60 d收获. 结果表明,籽粒苋K112(Amaranthus hypochondriacus L. Cv. ‘K112’)与R104(A. hypochondriacus L. Cv. ‘R104’)生物量随土壤中Cd浓度的增加而逐步下降,在土壤中Cd浓度<16 mg kg-1时,其生物量积累没有受到明显的影响. 在本试验最高Cd浓度条件(50 mg kg-1)下仍可生长,但生物量显著下降. 两种籽粒苋叶中Cd含量随土壤中Cd浓度增加而快速上升,在土壤Cd浓度为16 mg kg-1时,叶内Cd浓度分别达120.63和109.96 mg kg-1 (DW),达到超富集植物的临界标准. Cd在植物体内的分布特征为叶>根>茎. 籽粒苋两个品种相比,K112吸收Cd的能力大于R104,尤其是在高Cd浓度时,两种籽粒苋对Cd的绝对提取量相似,并随土壤Cd浓度的上升而快速增加. 籽粒苋K112和R104对土壤中的Cd具有很强的耐性和积累的能力,可作为Cd污染土壤的修复植物. 图4 表1参22
Abstract:
Amaranthus hypochondriacus L. is an easily cultivated and high-biomass plant which could uptake and accumulate high level of cadmium (Cd) from polluted soil. Two hybrid clones (A. hypochondriacus L. Cv. ‘K112’ and A. hypochondriacus L. Cv. ‘R104’) were tested for their capability of Cd tolerance and accumulation in a 60 days greenhouse pot experiment. The Cd concentration in the tested soil ranged from 0 to 50 mg kg-1. The results indicated that the biomass of the two clones declined with the increasing of Cd concentration in soil. The soil with Cd concentration lower than 16 mg kg-1 did not restrain the growth of the two tested plants. At the highest Cd concentration (50 mg kg-1) in soil, the both clones were still alive, but produced very low biomass. The Cd concentration in leaves markedly increased at the Cd concentration in soil from 0 to 50 mg kg-1. When growing in the soil with 16 mg kg-1 Cd, the Cd concentrations in the leaves of the two plants were up to 120.63 mg kg-1 and 109.96 mg kg-1, respectively, which were larger than the threshold as Cd hyperaccumulator (100 mg kg-1). The Cd concentrations in diferent parts of the plants with in the order of leaf > root > stem. The Cd concentration in the leaves of K112 was higher than that of R104, especially growing in the soil with high Cd concentration. The total quantities of Cd uptake by K112 and R104 were similar, but sharply increased with the increasing of Cd concentration in soil. K112 and R104 are two promising plants for phytoremediation because of their high Cd accumulation capacity and high biomass yield. Fig 4, Tab 1, Ref 22

参考文献/References:

1 Chaney RL, Brown SL, Li YM, Angle JS, Homer FA, Green CE. Potential use of metal hyperaccumulators. Min Environ Manage, 1995, 3 (3): 9~11
2 Kumar NPBA, Dushenkov V, Motto H, Raskin I. Phytoextraction: The use of plants to remove heavy metals from soils. Environ Sci Technol, 1995, 29: 1232~1238
3 Liu W (刘威), Su WS (束文圣), Lan CY (蓝崇钰). Viola baoshanensis, a plant that hyperaccumulates cadmium. Chin Sci Bull (科学通报), 2004, 49 (1): 29~32
4 Clemente R, Walker DJ, Bernal MP. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): The effect of soil amendments. Environ Poll, 2005, 138 (1): 46~58
5 Wu LH, Luo YM, Xing XR, Christie P. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric Ecosyst Environ, 2004, 102 (3): 307~318
6 Wei SH, Zhou QX, Wang X, Zhang KS, Guo GL MA LQ. A newly-discovered Cd-hyperaccumulator Solanum nigrum L. Chin Sci Bul, 2005, 50 (1): 33~38
7 Wang M, Zou J, Duan X, Jiang WS, Liu DH. Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Biores Tech, 2007, 98: 82~88
8 Kumar NPBA, Dushenkov V, Motto H, Raskin I. Phytoextraction: The use of plants to remove heavy metals from soils. Environ Sci Technol, 1995, 29: 1232~1238
9 Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochian LV. Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual, 1997, 26: 1424~1430
10 Su DC (苏德纯), Huang HZ (黄焕忠). The phytoremediation potential of oilseed rape (B. juncea) as a hyperaccumulator for cadmium contaminated soil. Chin Environ Sci (中国环境科学), 2002, 22 (1): 48~51
11 Zhou QX (周启星), Gao ZM (高拯民). Compartmental model of cadmium cycle and pollution control countermeasures in the Zhangshi sewage irrigation area of Shenyang. Acta Sci Circumst (环境科学学报), 1995, 15 (3): 273~280
12 Fan HL (范洪黎), Wang X (王旭), Zhou W (周卫). Low molecular weight organic acids in rhizosphere and their effects on cadmium accumulation in two cultivars of Amaranth (Amaranthus mangostanus L.). Sci Agric Sin (中国农业科学), 2007, 40 (12): 2727~2733
13 Chunilall V, Kindness A, Jonnalagadda SB. Heavy metal uptake by two edible amaranthus herbs grown on soil contaminated with lead, mercury, cadmium and nickel. J Environ Sci Health, 2005, 40 (2): 375~384
14 Li NY (李凝玉), Li ZA (李志安), Ding YZ (丁永祯), Zou B ( 邹碧), Zhuang P (庄萍). Effect of intercropping different crops with maize on the Cd uptake by maize. Chin J Appl Ecol (应用生态学报), 2008, 19 (6): 1369~1373
15 Qin JH (秦嘉海). Effect of salt tolerant herbage on meadow soil in hexi corridor. Chin J Soil Sci (土壤通报), 2005, 36 (5): 806~808
16 Baker AJM, Brooks RR. Terrestrial higher plants which hypemcuumulate elements-a review of their distribution, ecology and phytochemistry bioreeovery. Biorecovery, 1989, 1: 81~126
17 Ghosh M, Singh SP. A comparative study of cadmium phytoextraction by accumulator and weed species. Enviro Poll, 2005, 133 (2): 365~371
18 Li TX (李廷轩), Ma GR (马国瑞), Zhang XZ (张锡洲). Root exudates of potassium-enrichment genotype grain amaranth and their activation on soil mineral potassium. Chin J Appl Ecol (应用生态学报), 2006, 17 (3): 368~372
19 Tu SX (涂书新), Sun JH (孙锦荷), Guo ZF (郭智芬). The root exudation of grain amaranth and its role in release of mineral potassium. Acta Agric Nucl Sin (核农学报), 1999, 13 (5): 305~311
20 Zhou M (周明), Tu SX (涂书新), Sun JH (孙锦荷), Guo ZF (郭智芬). Uptake of potassium in soil and mineral by grain amaranth (Amaranthus spp.). Acta Agric Nucl Sin (核农学报), 2005, 19 (4): 291~296
21 Ding YZ (丁永贞), Li ZA (李志安), Zou B (邹碧), Tan WN (谭万能), Gu W (顾伟), Cao YS (曹裕松). Effect of organic acids on cadmium desorption from paddy soil of the Pearl River delta in China. Chin J Appl Environ Biol (应用与环境生物学报), 2007, 13 (3): 289~293
22 Fan HL (范洪黎), Wang X (王旭), Zhou W (周卫). Effect of malic acid and citric acid addition on Cd transformations in soil and Cd uptake in amaranth. Plant Nutr Fert Sci (植物营养与肥料学报), 2008, 14 (1): 132~138

相似文献/References:

[1]夏汉平.土壤-植物系统中的镉研究进展[J].应用与环境生物学报,1997,3(03):289.
 Xia Hanping.STUDIES ON CADMIUM IN SOIL-PLANT SYSTEM[J].Chinese Journal of Applied & Environmental Biology,1997,3(01):289.
[2]白红娟,张肇铭,李保珍,等.固定化球形红细菌去除镉的动力学及其与质粒的关系[J].应用与环境生物学报,2008,14(02):249.
 BAI Hongjuan,et al..Kinetics of Cadmium Removal by Immobilized Rhodobacter sphaeroides and Its Relation with Plasmid[J].Chinese Journal of Applied & Environmental Biology,2008,14(01):249.
[3]段学军** 黄春晓.重金属镉对水田土壤微生物基因多样性的影响[J].应用与环境生物学报,2008,14(04):510.
[4]潘响亮,张道勇,黄承琳.向日葵根分泌物对水合铁氧化物(HFO)吸附Cd2+的促进效应[J].应用与环境生物学报,2010,16(01):33.[doi:10.3724/SP.J.1145.2010.00033]
 HUANG Chengling,ZHANG Daoyong,PAN Xiangliang.Enhanced Adsorption of Cd2+ to HFO by Root Exudates from Helianthus annuus[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):33.[doi:10.3724/SP.J.1145.2010.00033]
[5]赵晶,冯文强,秦鱼生,等.不同氮肥对小麦吸收镉的影响*[J].应用与环境生物学报,2010,16(01):58.[doi:10.3724/SP.J.1145.2010.00058]
 ZHAO Jing,FENG Wenqiang,QIN Yusheng,et al.Effects of Different Nitrogen Fertilizers on Cadmium Uptake by Wheat*[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):58.[doi:10.3724/SP.J.1145.2010.00058]
[6]曹哲明,杨健.不同浓度Cd2+对鲤鱼基因组DNA的影响[J].应用与环境生物学报,2010,16(04):457.[doi:10.3724/SP.J.1145.2010.00457]
 CAO Zheming,YANG Jian.Effect of Cadmium at Different Concentrations on Genomic DNA of Common Carps[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):457.[doi:10.3724/SP.J.1145.2010.00457]
[7]湛方栋,何永美,李元,等.云南会泽废弃铅锌矿区和非矿区小花南芥根际真菌的耐镉性[J].应用与环境生物学报,2010,16(04):572.[doi:10.3724/SP.J.1145.2010.00572]
 ZHAN Fangdong,HE Yongmei,LI Yuan,et al.Cadmium Tolerance of Rhizosphere Fungi of Arabis alpina in Abandoned Lead-zinc Mining and Non-mining Area in Huize, Yunnan, China[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):572.[doi:10.3724/SP.J.1145.2010.00572]
[8]李平,白云凤,冯瑞云,等.籽粒苋苹果酸酶(NAD-ME)基因密码子偏好性分析[J].应用与环境生物学报,2011,17(01):12.[doi:10.3724/SP.J.1145.2011.00012]
 Li Ping,BAI Yunfeng,FENG Ruiyun,et al.Analysis of Codon Bias of NAD-ME Gene in Amaranthus hypochondriacus[J].Chinese Journal of Applied & Environmental Biology,2011,17(01):12.[doi:10.3724/SP.J.1145.2011.00012]
[9]王萌,龚双姣,刘珊珊,等.表面活性剂对沉积物中纳米TiO2与Cd单一及复合污染生态毒理学效应的影响[J].应用与环境生物学报,2015,21(05):791.[doi:10.3724/SP.J.1145.2015.07034]
 WANG Meng,GONG Shuangjiao,LIU Shanshan,et al.Impacts of surfactants on the ecotoxicological effects of TiO2-NP and/or Cd contamination in sediments[J].Chinese Journal of Applied & Environmental Biology,2015,21(01):791.[doi:10.3724/SP.J.1145.2015.07034]
[10]周伟,邓良基,邓欧平,等.成都平原菌渣还田土壤镉铅含量变化和环境容量[J].应用与环境生物学报,2017,23(04):701.[doi: 10.3724/SP.J.1145.2016.08038]
 ZHOU Wei,DENG Liangji**,DENG Ouping,et al.Isolation and identification of dicamba-degrading bacterium Ochrobactrum sp. 3-3 and investigation of its degradation characteristics[J].Chinese Journal of Applied & Environmental Biology,2017,23(01):701.[doi: 10.3724/SP.J.1145.2016.08038]

备注/Memo

备注/Memo:
国家自然科学基金项目(Nos. 30630015,30670393)、广东省科技计划(No. 2006A36703004)、广东省自然科学基金(No. 5006760)和中国科学院知识创新工程方向性项目(No. KSCX2-SW-133)资助
更新日期/Last Update: 2010-02-09