|本期目录/Table of Contents|

[1]高晓静,张昊琳,桑羽希,等.利用杂草培养料栽培双孢蘑菇的可行性[J].应用与环境生物学报,2018,24(06):1275-1282.[doi:10.19675/j.cnki.1006-687x.2018.01033]
 GAO Xiaojing,et al..Feasibility of weeds-based compost-cultivated Agaricus bisporus[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1275-1282.[doi:10.19675/j.cnki.1006-687x.2018.01033]
点击复制

利用杂草培养料栽培双孢蘑菇的可行性()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年06期
页码:
1275-1282
栏目:
研究论文
出版日期:
2018-12-25

文章信息/Info

Title:
Feasibility of weeds-based compost-cultivated Agaricus bisporus
作者:
高晓静 张昊琳 桑羽希 蔡盼盼 张国庆 陈青君
1北京农学院植物科学技术学院农业应用新技术北京市重点实验室 北京 102206 2北京农学院生物科学与工程学院农业部都市农业(北方)重点实验室 北京 102206
Author(s):
GAO Xiaojing et al.
1 Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agricultural, Beijing 102206, China 2 Key Laboratory of Urban Agriculture of Ministry of (North) Agriculture, College of Biological Sciences and Engineering, Beijing University of Agricultural, Beijing 102206, China
关键词:
培养料木质纤维素木质纤维素降解酶细菌菌群
Keywords:
compost lignocellulose lignocellulase bacterial community
分类号:
S646
DOI:
10.19675/j.cnki.1006-687x.2018.01033
摘要:
充分利用当地杂草资源生产双孢蘑菇对于降低生产成本和环境保护具有重要意义. 在密云库区杂草多样性调查和配方工艺调整的基础上,对3个批次库区杂草的双孢蘑菇(Agaricus bisporus)生产进行全程监测,包括堆肥期和出菇期的培养料理化性质、物质变化、相关降解酶活性和培养料发酵过程中细菌菌群变化,统计产量等. 结果显示,库区杂草种类繁多,株高茎粗,茎杆坚硬紧实,打捆后的杂草饱和吸水量为76.78%. 堆肥期培养料的含水量、含碳量和碳氮比逐渐下降,出菇期变化不大;培养料的含氮量在培养料一次发酵结束(PI)均有下降的现象,二次发酵结束(PII)含氮量升高. 培养料二次发酵过程中纤维素和半纤维素的利用率均介于40%-60%之间;木质素利用率介于20%-30%. 在双孢蘑菇菌丝生长和出菇过程中木质素的利用率为16%-21%. 培养料纤维素和半纤维素的含量变化与相关降解酶变化情况相一致. 堆肥期样品Illumina测序得到432 595条有效序列,序列平均长度为441 bp;分类分析表明,堆肥时期优势菌群为拟杆菌门(Bacteroidetes)的普氏菌属(Prevotella),厚壁菌门(Firmicutes)的芽孢杆菌属(Bacillus),栖热菌门(Deinococcus-Thermus)的Thermus属、Truepera属、Caldicoprobacter属(一种木聚糖降解菌),放线菌门(Actinobacteria)的热多孢菌属(Thermopolyspora),变形菌门(Proteobacteria)的假黄单胞菌属(Pseudoxanthomonas). 3个批次产量在17.1-19.7 kg/m2范围. 本研究表明库区杂草取代麦草进行双孢蘑菇工厂化生产是可行的,结果可为其合理利用和工艺改进提供理论依据. (图3 表4 参30)
Abstract:
Making full use of local weed resources to produce Agaricus bisporus is of great importance in reducing production costs and protecting the environment. In this paper, three trial experiments were conducted on the basis of weed diversity investigation around the Miyun Reservoir and the adjustment of formulation and technology in the industrial production of A. bisporus. Compost samples from different phases of the composting process and at various cultivation stages were collected for the determination of their physical-chemical properties, lignocellulose content, lignocellulolytic enzyme activities, and bacterial communities enrichment by 16S rRNA gene sequencing. The yield of mushrooms in each different trial was also calculated. The results showed several types of reservoir weeds with high, thick and hard stems. The saturated moisture of weeds was 76.78% after baling. The water content, carbon content, and C/N ratio of the samples decreased gradually during composting, but had little change during cultivation. The nitrogen content decreased at the end of phase I and increased at the end of phase II. During composting, the loss rates of hemicellulose and cellulose were both between 40% and 60%, and the loss rate of lignin was between 20% and 30%. During cultivation, instead, the loss rate of lignin was between 16% and 21%. The changes in the content of cellulose and hemicellulose of compost were consistent with that of the activity of the related degradation enzymes. A total of 432 595 valid sequences were obtained by Illumina sequencing for the samples derived from the three composting trials, and the average length of the sequences was 441 bp. Taxonomic analysis showed that the dominant bacteria were Prevotella (phylum Bacteroidetes), Bacillus (phylum Firmicutes), Thermus, Truepera, and Caldicoprobacter (phylum Deinococcus-Thermus), Thermopolyspora (phylum Actinobacteria), and Pseudoxanthomonas (phylum Proteobacteria).The yield of the three trials was in the range of 17.1-19.7 kg/m2. It is thus feasible to use reservoir weeds compost instead of wheat straw compost for the cultivation of A. bisporus.

参考文献/References:

1 刘建凤, 吉春明, 陆玉荣, 张春梅, 苏建坤, 张洪海. 双孢蘑菇生产研究进展及生产技术体系组建的设想[J]. 江西农业学报, 2014, 26 (2): 118-121 [Liu JF, Ji CM, Lu YR, Zhang CM, Su JK, Zhang HH. Research progress in production of Agaricus bisporus and ideas about establishing its production technology system [J]. Acta Agric Jiangxi, 2014, 26 (2): 118-121]
2 Sonnenberg AS, Baars JJ, Gao W, Visser RG. Developments in breeding of Agaricus bisporus var. bisporus: progress made and technical and legal hurdles to take [J]. Appl Microbiol Biotechnol, 2017, 101 (5): 1819-1829
3 Gerrits JPG. Nutrition and Compost: The Cultivation of Mushrooms [M]. Rustington, UK: Darlington Mushroom Laboratories, 1988: 206-223
4 Jurak E, Kabel MA, Gruppen H. Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus [J]. Carbohydr Polym, 2014, 101: 281-288
5 Kabel MA, Jurak E, Makela MR, de Vries RP. Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation [J]. Appl Microbiol Biotechnol, 2017, 101: 4363-4369
6 Prasad S, Singh A, Joshi HC. Ethanol as an alternative fuel from agricultural, industrial and urbanresidues [J]. Resour Conserv Recy, 2007, 50 (1): 1-39
7 Moretti MMS, Bocchini-Martins DA, Da Silva R, Rodrigues A, Sette LD, Gomes E. Selection ofthermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-statefermentation [J]. Braz J Microbiol, 2012, 43 (3): 1062-1071
8 Griensven LJLDV. The Cultivation of Mushrooms [M]. Rustington, UK: Darlington Mushroom Laboratories Ltd., 1988
9 Chatelier L, Nielsen T, Qin J. Richness of human gut microbiome correlates with metabolic markers [J]. Nature, 2013, 500: 541-546
10 Tang Y, Underwood A, Gielbert A, Woodward MJ, Petrovska L. Metaproteomics analysis reveals the adaptation process for the chicken gut microbiota [J]. Appl Environ Microbiol, 2014, 80 (2): 478-485
11 von Bergen M, Jehmlich N, Taubert M, Vogt C, Bastida F, Herbst FA, Schmidt F, Richnow HH, Seifert J. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology [J]. ISME J, 2013, 7: 1877-1885
12 Peng J, Zhang Y, Su J, Qiu Q, Jia Z, Zhu YG. Bacterial communities predominant in the degradation of 13C(4)-4,5,9,10-pyrene during composting [J]. Bioresour Technol, 2013, 143 (1): 608-614
13 de Boer W, Kuramae E, Klein Gunnewiek P, Baars JJP, van der Horst HC, Klijn N. Varieties in bacterial communities in compost during composting and cultivation [C]. Proceedings of the 19th Congress of the International Society for Mushroom Science, Amsterdam, 2016: 152-155
14 鲁丽鑫. 双孢蘑菇新基质的筛选及营养生理的研究[D]. 长春: 吉林农业大学, 2014 [Lu LX. Study on screening of new cultivation substrates and nutritional physiology of Agaricus bisporus [D]. Changchun: Jilin Agricultural University, 2014]
15 梁枝荣, 张清文, 周志强, 郭生. 应用玉米秸秆栽培双孢蘑菇新技术[J]. 微生物学通报, 2000, 27 (6): 443-457 [Liang ZR, Zhang QW, Zhou ZQ, Guo S. The new technology of cultivation of Agaricus bisporus by using corn stalks [J]. Microbiol Chin, 2000, 27 (6): 443-457]
16 陈钟佃, 黄秀声, 刘明香, 郭仲杰, 黄勤楼. 杂交狼尾草栽培双孢蘑菇初探[J]. 食用菌学报, 2011, 18 (01): 9-11 [Chen ZD, Huang XS, Liu MX, Guo ZJ, Huang QL. Cultivat ion of Agaricus bisporus using hybrid Pennisetum [J]. Acta Edulis Fungi, 2011, 18 (1): 9-11]
17 Van Griensven LJLD. The Cultivation of Mushrooms [M]. Horst, The Netherlands: Mushroom Experimental Station, 1988: 515-518
18 Jurak E, Punt AM, Arts W, Kabel MA, Gruppen H. Fate of carbohydrates and lignin during composting and mycelium growth of Agaricus bisporus on wheat straw based compost [J]. PLoS ONE, 2015, 10 (10): e0138909
19 Kariaga MG, Nyongesa HW, Keya NCO, Tsingalia HM. Compost physico-chemical factors that impact on yield in button mushrooms, Agaricus bisporus (Lge) and Agaricus bitorquis (Quel) Saccardo [J]. J Agric Sci, 2012, 3 (1): 49-54
20 Stoknes K, Beyer DM, Norgaard E. Anaerobically digested food waste in compost for Agaricus bisporus and Agaricus subrufescens and its effect on mushroom productivity [J]. J Sci Food Agric, 2013, 93 (9): 2188-2200
21 Ahmadi F. Chemical composition and protein enrichment of orange peels and sugar beet pulp after fermentation by two Trichoderma species [J]. Ira J Vet Res, 2014, 16 (1): 25-30
22 叶云霞, 金宁, 杨杰, 孟俊龙, 常明昌. 不同培养料对元蘑胞外酶活性的影响[J]. 山西农业大学学报(自然科学版), 2011, 31 (2): 172-175 [Ye YX, Jing N, Yang J, Meng JL, Chang MC. Effect of different composts on extracellular enzyme activity of hohenbuehelia serotina [J]. Shanxi Agric Univ (Nat Sci Ed), 2011, 31 (2): 172-175]
23 王珊珊, 孙健, 陈青君, 朱孟娟, 王贺祥, 张国庆. 丁香桑黄胞外漆酶的分离纯化与性质研究[C]. 第十届全国食用菌学术研讨会. 北京: 中国菌物学会, 2014: 205-213 [Wang SS, Sun J, Chen QJ, Zhu MJ, Wang HX, Zhang GQ. Purification and characterization of an extracellular laccase from Inonotus baumii, sanghuang mushroom on Syringa [C]. The 10th National Symposium on Edible Fungi. Beijing: Mycologigal Society of China, 2014: 205-213]
24 黄建春. 荷兰双孢蘑菇培养料堆制发酵先进技术[J]. 食药用菌, 2015, 23 (1): 8-11 [Huang JC. Advanced fermentation technology of Dutch Agaricus bisporus compost [J]. Edible Med Mushrooms, 2015, 23 (1): 8-11]
25 秦改娟, 王晓, 陈青君, 张国庆. 不同配方培养料生产双孢蘑菇过程中主要木质纤维素降解酶及物料组分的变化[J]. 应用与环境生物学报, 2017, 23 (6): 1035-1041 [Qin GJ, Wang X, Chen QJ, Zhang GQ. Changes of lignocellulolytic enzymes and material components in different compost formulas during the production of Agaricus bisporus [J]. Chin J Appl Environ Biol, 2017, 23 (6): 1035-1041]
26 Arce-Cervantes O, Saucedo-García M, Leal Lara H, Ramírez-Carrillo R, Cruz-Sosa F, Loera O. Alternative supplements for Agaricus bisporus production and the response on lignocellulolytic enzymes [J]. Sci Hortic, 2015, 192: 375-380
27 鲁丽鑫, 姚方杰, 张友民. 对双孢蘑菇培养料在发酵过程中胞外酶活性变化和木质纤维素降解的研究[C]//第十届全国食用菌学术研讨会论文汇编. 北京: 中国菌物学会, 2014: 8 [Lu LX, Yao FJ, Zhang YM. Study on extracellular enzyme activity and lignocellulose degradation of Agaricus bisporus on different cultivation formulas at the stage of fermentation [C]//The 10th National Symposium on Edible Fungi. Beijing: Mycologigal Society of China, 2014: 8]
28 贾洋洋. 利用宏基因组方法分析堆肥生境中微生物区系的变化[D]. 济南: 山东大学, 2012 [Jia YY. Microbial diversity analysis in composting environment by metagenomic method [D]. Jinan: Shandong University, 2012]
29 Kertesz M, Safianowicz K, Bell T. New insights into the microbial communities and biological activities that define mushroom compost [C]. Proceedings of the 19th Congress of the International Society for Mushroom Science, Amsterdam, 2016: 161-165
30 Agnolucci M, Cristani C, Battini F, Palla M. Microbially-enhanced composting of olive mill solid waste (wet husk): bacterial and fungal community dynamics at industrial pilot and farm level [J]. Bioresour Technol, 2013, 134: 10-16

相似文献/References:

[1]李科,靳艳玲,甘明哲,等.木质纤维素生产燃料乙醇的关键技术研究现状[J].应用与环境生物学报,2008,14(06):877.[doi:10.3724/SP.J.1145.2008.00877]
 LI Ke,JIN Yanling,et al.Progress in Research of Key Techniques for Ethanol Production from Lignocellulose[J].Chinese Journal of Applied & Environmental Biology,2008,14(06):877.[doi:10.3724/SP.J.1145.2008.00877]
[2]何明雄,祝其丽,潘科,等.利用木质纤维素类生物质发酵生产乙醇重组菌株研究进展[J].应用与环境生物学报,2009,15(04):579.[doi:10.3724/SP.J.1145.2009.00579]
 HE Mingxiong,ZHU Qili,PAN Ke,et al.Progress in Ethanol Production with Lignocellulosic Biomass by Different Recombinant Strains[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):579.[doi:10.3724/SP.J.1145.2009.00579]
[3]邓辉,王成,吕豪豪,等.堆肥过程放线菌演替及其木质纤维素降解研究进展[J].应用与环境生物学报,2013,19(04):581.[doi:10.3724/SP.J.1145.2013.00581]
 DENG Hui,WANG Cheng,LÜ,et al.Research Progress in Succession of Actinomycetal Communities and Their Capacity of Degrading Lignocellulose During Composting Process[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):581.[doi:10.3724/SP.J.1145.2013.00581]
[4]涂毅,高秋强,鲍杰.外源功能基因在木质纤维素依赖型乳酸菌Pediococcus acidilactici DQ2中的表达[J].应用与环境生物学报,2013,19(05):811.[doi:10.3724/SP.J.1145.2013.00811]
 TU Yi,GAO Qiuqiang,BAO Jie.Expression of Functional Genes in Lignocellulose-dependent Lactic Acid Bacterium Pediococcus acidilactici DQ2[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):811.[doi:10.3724/SP.J.1145.2013.00811]
[5]秦改娟,王晓,陈青君,等.不同配方培养料生产双孢蘑菇过程中主要木质纤维素降解酶及物料组分的变化[J].应用与环境生物学报,2017,23(06):1035.[doi:10.3724/SP.J.1145.2017.01019]
 QIN Gaijuan,WANG Xiao,CHEN Qingjun**& ZHANG Guoqing.Changes of lignocellulolytic enzymes and material components in different compost formulas during the production of Agaricus bisporus[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):1035.[doi:10.3724/SP.J.1145.2017.01019]
[6]游洋,吴波,胡国全,等.牛粪生物质资源综合利用研究进展[J].应用与环境生物学报,2018,24(02):401.[doi: 10.19675/j.cnki.1006-687x.2017.05007]
 YOU Yang,WU Bo,HU Guoquan,et al.Research progress of the comprehensive utilization of cow dung biomass resources[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):401.[doi: 10.19675/j.cnki.1006-687x.2017.05007]

更新日期/Last Update: 2018-12-25