|本期目录/Table of Contents|

[1]王敏强 吴沛鸿 沈益康 宋垚彬 吴爱平 王艳红**.盐胁迫下接种AM真菌对甜菊生长和氮磷吸收的影响*[J].应用与环境生物学报,2018,24(05):1-10.[doi:10.3724/SP.J.1145.2017.12038]
 WANG Minqiang,WU Peihong,SHEN Yikang,et al.Effects of arbuscular mycorrhizal fungus on the growth and nitrogen and phosphours acquisition of salt stressed Stevia rebaudiana*[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):1-10.[doi:10.3724/SP.J.1145.2017.12038]
点击复制

盐胁迫下接种AM真菌对甜菊生长和氮磷吸收的影响*()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年05期
页码:
1-10
栏目:
研究论文
出版日期:
2018-10-25

文章信息/Info

Title:
Effects of arbuscular mycorrhizal fungus on the growth and nitrogen and phosphours acquisition of salt stressed Stevia rebaudiana*
文章编号:
201712038
作者:
王敏强1 吴沛鸿1 沈益康1 宋垚彬2 吴爱平3 王艳红1**
1浙江农林大学省部共建亚热带森林培育国家重点实验室 杭州 311300
2杭州师范大学生态系统保护与恢复杭州市重点实验室 杭州 310036
3湖南大学生物与科学技术学院 长沙 410128
Author(s):
WANG Minqiang1 WU Peihong1 SHEN Yikang1 SONG Yaobin2 WU Aiping3 & WANG Yanhong1**
1State Key Laboratory of Subtropical Silviculture, Zhejiang A﹠F University , Hangzhou 311300, China.2Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou 310036, China.3College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, China.
关键词:
甜菊盐胁迫AM真菌叶干重P含量
Keywords:
Stevia rebaudiana salt stress AM fungus leaf dry weight P concentration
DOI:
10.3724/SP.J.1145.2017.12038
摘要:
盐胁迫是普遍而严重的世界性环境问题,丛枝菌根(Abuscular mycorrhizal,AM)真菌被认为是提高植物抗盐性的有效的生物方法。作为一种新兴的保健型糖源植物,甜菊(Stevia rebaudiana)的分布范围较广,而关于AM真菌在甜菊抗盐性方面的作用研究则相对较少。为解决这一问题,本研究通过控制实验研究盐胁迫下AM真菌对其生长和氮磷吸收方面的调控机理。在大棚控制试验中,通过设置盐胁迫(0mM和200mM)和接种AM真菌(未接种和接种摩西球囊霉)四种处理组合,来解析AM真菌对甜菊抗盐性的作用机理。结果发现,盐胁迫显著降低了甜菊的各部分鲜重和干重、基质pH值和菌根化结构形成的强度,但显著增加了植株的N、P含量。在非盐胁迫下,接种AM真菌显著增加了植株各部分的鲜重和干重;而在高盐处理下,AM真菌的促进效应则不明显,这可能与高盐下AM真菌结构的形成和发育状况的显著降低有关。此外,接种AM真菌显著增加了甜菊植株的磷含量尤其是在高盐胁迫下,且随着盐浓度的升高,甜菊的氮依赖性显著下降而磷依赖性显著升高,促进磷元素的吸收可能是AM真菌提高甜菊耐盐性的内在机理。结果表明,接种摩西球囊霉可显著增加甜菊的生物量,同时有利于高盐胁迫下甜菊植株磷元素的吸收,这可为甜菊的产业化经营和管理提供一定的理论依据。
Abstract:
Objectives: soil salinity is a common and serious environmental problem in the world. Arbuscular mycorrhizal fungi (AMF) are treated as bioameliorators of soil salinity tolerance in plants. As a new type of healthy and sugar source plant, Stevia rebaudiana is broadly distributed in China,. however, few work was conducted to explore the role of AMF on the salinity tolerance of it. This paper was aimed to study the mechanism of the effects of AMF on the growth and nutrient acquisition of the plants. Methods: In the greenhouse experiment, salt treatments (0mM and 200mM) and AM fungus treatments (inoculated with sterilized AM fungus and Glomus mosseae) were manipulated on this plant.Results: The results showed that salt treatment significantly decreased the fresh weight, dry weight, substrate pH and m%, however, significantly increased N and P concentration. In the absent of saline treatment, AM fungus inoculated plants had higher fresh weight and higher dry weight, while under salinity stressed conditions, the promotion effects of AM fungus were not evident compared to the non-inoculated plants. Meanwhile, compared with the control plants, AM-inoculated plants had higher P concentration especially under saline condition, and with the increase of salinity, the shoot mycorrhizal N response (MNR) significantly decreased while the shoot mycorrhizal P response (MPR) significantly increased. Obviously, promotion of P concentration by AM colonization appears to be the mechanism underlying the increased salinity resistance for the plants.Conclusions: In a word, inoculated with G. mosseae will somehow promote the biomass accumulation under non-saline conditions, and increased P acquisition under saline conditions, which provide theoretical guide for the production and management in practice.

相似文献/References:

[1]郭英,刘栋,赵蕾.生防枯草芽孢杆菌胞外植酸酶对小麦耐盐性的影响[J].应用与环境生物学报,2009,15(01):39.[doi:10.3724/SP.J.1145.2009.00039]
 GUO Ying,LIU Dong,ZHAO Lei.Effect of Extracellular Phytase Produced by Bacillus subtilis T2 on Salt Tolerance of Wheat Seedlings[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):39.[doi:10.3724/SP.J.1145.2009.00039]
[2]王淑智,李利,张道勇,等.NaCl与Cd对小球藻光系统Ⅱ(PSⅡ)活性的影响[J].应用与环境生物学报,2011,17(06):839.[doi:10.3724/SP.J.1145.2011.00839]
 WANG Shuzhi,LI Li,ZHANG Daoyong,et al.Effects of NaCl and Cd on PhotosystemⅡ (PSⅡ) Activity of Chlorella pyrenoidosa[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):839.[doi:10.3724/SP.J.1145.2011.00839]
[3]魏显珍,王淑智,潘响亮.盐胁迫对喜钙念珠藻生理活性的影响及钙的胁迫缓解效应[J].应用与环境生物学报,2013,19(04):655.[doi:10.3724/SP.J.1145.2013.00655]
 WEI Xianzhen,WANG Shuzhi,PAN Xiangliang.Alleviating Effect of Calcium on Salt-stress-induced Inhibition of Photosynthetic Activities in Nostoc calcicola Breb.[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):655.[doi:10.3724/SP.J.1145.2013.00655]
[4]陈娇,姜玉松,张义正,等.甘薯LEA2基因的克隆与表达分析[J].应用与环境生物学报,2014,20(02):204.[doi:10.3724/SP.J.1145.2014.00204]
 CHEN Jiao,JIANG Yusong,ZHANG Yizheng,et al.Cloning and expression analyses of LEA2 gene from Ipomoea batatas[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):204.[doi:10.3724/SP.J.1145.2014.00204]
[5]彭晓珏,刘瑢,阳菁,等.Gateway技术构建盐和干旱胁迫下水稻根系混合cDNA文库及其质量鉴定[J].应用与环境生物学报,2014,20(02):291.[doi:10.3724/SP.J.1145.2014.00291]
 PENG Xiaojue,LIU Rong,YANG Jing,et al.Construction and identification of a mixed cDNA library of rice roots under salt and drought stress using Gateway technology[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):291.[doi:10.3724/SP.J.1145.2014.00291]
[6]陈飞,王淑智,潘响亮.盐胁迫对蛋白核小球藻光系统I(PSI)和光系统II(PSII)的影响同步监测分析[J].应用与环境生物学报,2015,21(04):695.[doi:10.3724/SP.J.1145.2014.10028]
 CHEN Fei,WANG Shuzhi,PAN Xiangliang.Synchronous analysis of the effects of NaCl stress on photosystems I (PSI) and II (PSII) activities of Chlorella pyrenoidosa[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):695.[doi:10.3724/SP.J.1145.2014.10028]
[7]许天委,张晓楠,刘煜,等.海马齿小热激蛋白SpHSP18.1基因的克隆及盐胁迫表达分析[J].应用与环境生物学报,2015,21(05):882.[doi:10.3724/SP.J.1145.2015.04062]
 XU Tianwei,ZHANG Xiaonan,LIU Yu,et al.Molecular clone of Sesuvium portulacastrum small heat shock protein SpHSP18.1 gene and its expression profiling under salt stress[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):882.[doi:10.3724/SP.J.1145.2015.04062]
[8]张丽娟,李红兵,孙振玫,等.过表达IbOr基因甘薯增强抗盐性的生理机制[J].应用与环境生物学报,2017,23(01):54.[doi: 10.3724/SP.J.1145.2016.05005]
 zhang lijuan,Li hongbing**,et al.Physiological mechanism of enhanced salt stress tolerance in sweet potato (Ipomoes batats L.) with overexpression of IbOr gene[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):54.[doi: 10.3724/SP.J.1145.2016.05005]
[9]陈永富,王阳,冯倩,等.异源表达胡杨PeCPD基因提高烟草对盐、高氮和干旱胁迫的抗性[J].应用与环境生物学报,2017,23(2):225.[doi:10.3724/SP.J.1145.2016.10019]
 CHEN Yongfu,WANG Yang,FENG Qian,et al.Heterologous overexpression of Populus euphratica CPD improved tobacco resistance to salt, high nitrogen, and drought stress[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):225.[doi:10.3724/SP.J.1145.2016.10019]
[10]孙德智,韩晓日,彭靖,等.外源NO和水杨酸对盐胁迫下番茄幼苗光合机构的保护作用[J].应用与环境生物学报,2018,24(03):457.[doi:10.19675/j.cnki.1006-687x.2017.08019]
 SUN Dezhi**,HAN Xiaori,PENG Jing,et al.Protective effect of exogenous nitric oxide and salicylic acid on the photosynthetic apparatus of tomato seedling leaves under NaCl stress[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):457.[doi:10.19675/j.cnki.1006-687x.2017.08019]

备注/Memo

备注/Memo:
收稿日期: 2017-12-14 接受日期: 2018-02-09
*国家自然科学基金项目(31400366)、生态系统保护与恢复杭州市重点实验室开放基金(ECR-2017-01)项目和浙江省自然科学基金项目(LQ17C160003)资助?
**通讯作者(E-mail: wangyh313@126.com)
点击摘要页题目后的“PDF”可下载阅读全文;本文为已录用的作者修定稿,尚未经编辑全面修改。
引用本文请注明出处本刊;发表刊期和页码将以正式出版时的安排为准,但DOI确定不变。
更新日期/Last Update: 2018-03-19