|本期目录/Table of Contents|

[1]韩诺,朱忆秋,肖利娟,等.一座河道型水库浮游植物与附着硅藻群落对环境变化的响应比较[J].应用与环境生物学报,2018,24(06):1263-1269.[doi:10.19675/j.cnki.1006-687x.2017.12043]
 HAN Nuo,et al..Responses of phytoplankton and periphytic diatoms to environmental factors in a tropical riverine reservoir[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1263-1269.[doi:10.19675/j.cnki.1006-687x.2017.12043]
点击复制

一座河道型水库浮游植物与附着硅藻群落对环境变化的响应比较()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年06期
页码:
1263-1269
栏目:
研究论文
出版日期:
2018-12-25

文章信息/Info

Title:
Responses of phytoplankton and periphytic diatoms to environmental factors in a tropical riverine reservoir
作者:
韩诺 朱忆秋 肖利娟 韦桂峰
暨南大学生态学系,热带亚热带水生态工程教育部工程研究中心 广州 510632
Author(s):
HAN Nuo et al.
Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering of Ministry of Education, Department of Ecology, Jinan University, Guangzhou 510632, China
关键词:
浮游植物附着硅藻水温溶解氧河道型水库
Keywords:
phytoplankton periphytic diatom ater temperature dissolved oxygen riverine reservoir
分类号:
Q948.808
DOI:
10.19675/j.cnki.1006-687x.2017.12043
摘要:
浮游植物是湖泊或湖泊型水库的常规调查要素,而附着硅藻则是河流监测常用的方法,河道型水库监测中是采用浮游植物还是附着硅藻依赖于浮游植物与附着硅藻群落对环境要素的响应特征. 在热带地区一座典型河道型水库中采集浮游植物的同时,设置人工基质采集附着硅藻;鉴定出的浮游植物和附着硅藻分别为131种和138种;浮游植物和浮游硅藻群落变化主要体现在优势种的演替上,空间差异小;附着硅藻群落的变化则体现在种类组成和优势种演替两个方面,群落的空间差异较大. 多元回归分析和冗余分析表明影响浮游植物和附着硅藻群落的环境因子不同,温度是浮游植物、浮游硅藻和附着硅藻的关键解释变量(P < 0.01),溶解氧和硝氮也是附着硅藻的解释变量(P < 0.05);环境因子对附着硅藻群落变化具有更高解释度(R2 = 0.27). 因此,对于河道型水库而言,附着硅藻群落对环境变化的响应更灵敏,与浮游植物反映的环境信息有一定的差异,结合附着硅藻和浮游植物群落的变化能更好地反映水环境的变化. (图2 表4 参31)
Abstract:
Riverine reservoirs have a short water retention time, which is ecologically more similar to that of rivers. Generally, phytoplankton-based approaches are used for lakes and periphytic diatom-based approach for rivers. To understand the differences in the responses of phytoplankton and periphytic diatoms to environmental variables for riverine reservoirs, we collected periphytic diatom samples on artificial substrata as well as phytoplankton samples from a tropical reservoir with a resident time less than 10 days. Our results showed that 131 phytoplankton species and 138 periphytic diatoms were detected; the variation of phytoplankton community was mainly reflected by the dominant species with a strong response to the environmental variables at a time scale, whereas the variation of periphytic diatom community was noted in both the species composition and the dominant species, with a strong response at spatial-temporal scales. The multivariate regression analysis and redundancy analysis showed that environmental factors have higher explanations for the variance of the periphytic diatom community (R2 = 0.27). Temperature was the key explanatory variable for phytoplankton, planktonic diatoms and periphytic diatoms (P < 0.01). However, dissolved oxygen and nitrate were also detected as significant explanatory factors associated with periphytic diatom community (P < 0.01). Thus, the periphytic diatoms were concluded to be more sensitive to environmental change and were associated with more environmental variables than phytoplankton. Periphytic diatoms appear to provide more ecological information than phytoplankton for riverine reservoirs.

参考文献/References:

1. Reynolds CS, Descy JP, Padisák J. Are phytoplankton dynamics in rivers so different from those in shallow lake? [J]. Hydrobiologia, 1994, 289: 1- 7
2. Cellamare M, Morin S, Coste M, Haury J. Ecological assessment of French Atlantic lakes based on phytoplankton, phytobenthos and macrophytes [J]. Environ Monit Assess, 2012, 184 (8): 4685
3. Worf DL. Biological Monitoring for Environmental Effects [M]. Toronto: Lexington Books, 1980
4. Kelly MG, Whitton BA. The trophic diatom index: a new index for monitoring eutrophication in rivers [J]. J Appl Phycol, 1995, 7 (4): 433-444
5. Van DH, Mertens A, Sinkeldam J. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands J Aquat Ecol, 1994, 28 (1): 117-133
6. Bate G, Smailes P, Adams J. A water quality index for use with diatoms in the assessment of rivers [J]. Water SA, 2004, 30 (4): 493-498
7. 裴国凤, 刘梅芳. 武汉东湖底栖藻类在不同基质上生长的比较[J]. 湖泊科学, 2009, 21 (3): 357-362 [Pei GF, Liu MF. Comparison of benthic algal composition developed on different substrata in Lake Donghu, Wuhan [J]. Lake Sci, 2009, 21 (3): 357-362]
8. 陈向, 刘静, 何琦, 林秋奇, 韩博平, 韦桂峰. 东江惠州河流段人工基质附着硅藻群落的季节性动态[J]. 湖泊科学, 2012, 24 (5): 723-731 [Chen X, Liu J, HE Q, Lin QQ, Han BP, Wei GF. Seasonal variations of periphytic diatom community in artificial substrata in Huizhou section of the Dongjiang River, Guangdong Province, Southern China [J]. Lake Sci, 2012, 24 (5): 723-731]
9. Tuchman ML, Stevenson RJ. Comparison of clay tile, sterilized rock, and natural substrate diatom communities in a small stream in Southeastern Michigan, USA [J]. Hydrobiologia, 1980, 75 (1): 73-79
10. 金相灿, 屠清瑛. 湖泊富营养化调查规范[M]. 2版. 北京: 中国环境科学出版社, 1990 [Jin XC, Tu QY. Eutrophication of Lakes in China [M]. Beijing: China Environmental Science Press,, 1990]
11. 林少君, 贺立静, 黄沛生, 韩博平. 浮游植物中叶绿素a提取方法的比较与改进[J]. 生态科学, 2005, 24 (1): 9-11 [Lin SJ, He LJ, Huang PS, Han BP. Comparison and improvement on the extraction method for chlorophyll a in phytoplankton [J]. Ecol Sci, 2005, 24 (1): 9-11]
12. 牛海玉, 肖利娟, 韩博平. 采用倒置显微镜法定量浮游植物的数据稳定性[J]. 湖泊科学, 2016, 28 (1): 141-148 [Niu HY, Xiao LJ, Han BP. Data quality analysis of phytoplankton counted with the inverted microscopy-based method [J]. Lake Sci, 2016, 28 (1): 141-148]
13. Edler L, Elbrachter M. The Utermohl method for quantitative phytoplankton analysis [G]//Karlson B, Cusack C, Bresnan E. Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis. Paris: UNESCO, 2010: 110
14. 胡鸿钧, 魏印心. 中国淡水藻类——系统、分类及生态[M]. 北京: 科学出版社, 2006 [Hu HJ, Wei YX . Freshwater Alage in China-Systematics, Taxonomy and Ecology [M]. Beijing: Science Press, 2006]
15. 刘静. 东江水系底栖硅藻群落与生物监测[M]. 北京: 中国环境出版社, 2014: 16-39 [Liu J. Benthic Diatom Community and Biomonitoring in Dong River [M]. Beijing: China Environmental Science Press, 2014: 16-39]
16. 邱礼城, 韦桂峰, 李湘姣, 史栾生, 林叔忠, 韩博平. 广东鉴江水系底栖硅藻多样性与时空分布特征[J]. 热带亚热带植物学报, 2016, 24 (2): 197-207 [Qiu LC, Wei GF, Li XJ, Shi LS, Lin SZ, Han BP. Species diversity and temporal-spatial distribution of benthic diatoms in Jianjiang River, Guangdong Province [J]. J Trop Subtr Bot, 2016, 24 (2): 197-207]
17. [EB/OL] https://westerndiatoms.colorado.edu/
18. 刘静. 珠江水系东江流域底栖硅藻图集[M]. 北京: 中国环境科学出版社, 2013: 1-108 [Liu J. Benthic Diatom Atlas of Dongjiang River Watershed in Pearl River System [M]. Beijing: China Environmental Science Press, 2013: 1-108]
19. Jost L. Partitioning diversity into independent alpha and beta components [J]. Ecology, 2007, 88 (10): 2427-2439
20. Lean DRS, Pick FR. Photosynthetic response of lake plankton to nutrient enrichment: a test for nutrient limitation [J]. Limnol Oceanogr, 1981, 26 (6):1001-1019
21. Reynolds CS. Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment [J]. Hydrobiologia, 2007, 578 (1): 37-45
22. Association APH, Association AWW. Standard Methods for the Examination of Water and Wastewater [M]. 17th ed. Washington, DC: American Public Health Association, 1989
23. 高远, 苏宇祥, 亓树财. 沂河流域浮游植物与水质评价[J]. 湖泊科学, 2008, 20 (4): 544-548 [Gao Y, Su YX, Qi SC. Phytoplankton and evaluation of water quality in Yi River watershed [J]. Lake Sci, 2008, 20 (4): 544-548]
24. 何国全, 雷腊梅, 韩博平. 南亚热带河流型水库浮游植物群落的季节变化: 以广东飞来峡水库为例[J]. 热带亚热带植物学报, 2006, 14 (3): 183-189 [He GQ, Lei LM, HAN BP. Seasonal variation in phytoplankton community in a tropical riverine reservoir: a case study of Feilaixia Reservoir [J]. J Trop Subtr Bot, 2006, 14 (3): 183-189]
25. Nalewajko C, Murphy TP. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach [J]. Limnology, 2001, 2 (1): 45-48
26. Santos ACAD, Calijuri MC. Survival strategies of some species of the phytoplankton community in the Ba rra Bonita Reservoir (S?o Paulo, Brazil) [J]. Hydrobiologia, 1998, 367 (1-3): 139-151
27. Morais P, Chícharo MA, Barbosa A. Phytoplankton dynamics in a coastal saline lake (SE-Portugal) [J]. Acta Oecol, 2003, 24 (1): S87-S96
28. 孔义军, 杨浩文, 林少君, 雷腊梅, 韩博平. 南亚热带城市浅水湖泊富营养化与浮游植物群落的时空特征: 以肇庆星湖为例[J]. 应用与环境生物学报, 2009, 15 (2): 153-160 [Sun YJ, Yang HW, Lin SJ, Lei LM, Han BP. Eutrophication and phytoplankton community structure of Xinghu Lake: a shallow urban lake in South China [J]. Chin J Appl Environ Biol, 2009, 15 (2): 153-160]
29. 董旭辉, 羊向东, 王荣. 长江中下游地区湖泊富营养化的硅藻指示性属种[J]. 中国环境科学, 2006, 26 (5): 570-574 [Dong XH, Yang XD, Wang R. Diatom indicative species of eutrophication of the lakes in the middle and lower reach regions of Yangtze River [J]. China Environ Sci, 2006, 26 (5): 570-574]
30. Bellinger BJ, Cocquyt C, O’Reilly CM. Benthic diatoms as indicators of eutrophication in tropical streams [J]. Hydrobiologia, 2006, 573 (1): 75-87.
31. Jüttner I, Rothfritz H, Ormerod SJ. Diatoms as indicators of river quality in the Nepalese Middle Hills with consideration of the effects of habitat-specific sampling. Plant J, 36 (2): 475-486
32.

相似文献/References:

[1]毕远溥,董婧,蒋双,等.小窑湾双壳贝类筏式养殖对海域环境的影响[J].应用与环境生物学报,2002,8(03):270.
 BI Yuanpu,et al..Effects of bivalve raft cultivation on environment characteristics of the Xiaoyao Bay[J].Chinese Journal of Applied & Environmental Biology,2002,8(06):270.
[2]张乃群,王正德,杜敏华,等.南水北调中线水源区浮游植物与水质研究[J].应用与环境生物学报,2006,12(04):506.
 ZHANG Naiqun,et al..Phytoplankton and Water Quality of Water Source Area of the Middle Line Project of South to North Water Diversion[J].Chinese Journal of Applied & Environmental Biology,2006,12(06):506.

更新日期/Last Update: 2018-12-25