|本期目录/Table of Contents|

[1]常斐斐,曹曦跃,彭婕,等.褪黑素诱导拟南芥抗芸薹根肿菌[J].应用与环境生物学报,2018,24(01):75-80.[doi:10.19675/j.cnki.1006-687x.2017.03033]
 CHANG Feifei,CAO Xiyue,PENG Jie,et al.Induced resistance to $Plasmodiophora brassicae$ in $Arabidopsis$ by melatonin*[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):75-80.[doi:10.19675/j.cnki.1006-687x.2017.03033]
点击复制

褪黑素诱导拟南芥抗芸薹根肿菌()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年01期
页码:
75-80
栏目:
研究论文
出版日期:
2018-02-09

文章信息/Info

Title:
Induced resistance to $Plasmodiophora brassicae$ in $Arabidopsis$ by melatonin*
作者:
常斐斐曹曦跃彭婕谭筱醴陈天盈曾杰曹毅乔代蓉
1四川大学生命科学学院微生物与代谢工程四川省重点实验室 成都 610065 2东北农业大学食品学院 哈尔滨 150036
Author(s):
CHANG Feifei CAO Xiyue PENG Jie TAN Xiaoli CHEN Tianying ZENG Jie CAO Yi**QIAO Dairong**
1 Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, China 2 Food Science College, Northeast Agricultural University, Harbin 150036, China
关键词:
芸薹根肿菌拟南芥褪黑素诱导抗病茉莉酸途径水杨酸途径
Keywords:
Plasmodiophora brassicae Arabidopsis thaliana melatonin induced resistance jasmonic acid-signaling pathway salicylic acid-signaling pathway
分类号:
S432
DOI:
10.19675/j.cnki.1006-687x.2017.03033
摘要:
芸薹根肿菌是一种土传性致病菌,严重时可导致作物死亡. 利用荧光定量PCR的方法研究褪黑素诱导拟南芥对根肿病的抗病效果及分子机制. 结果显示:不同的褪黑素诱导浓度对根肿病的诱抗效果不同,其中,10 ?mol/L的褪黑素溶液为最佳抗菌浓度,抗诱效果达到47.57%. 褪黑素处理后的拟南芥根部的发病程度减轻并且根肿菌孢子囊数目减少. 荧光定量PCR技术检测发现,褪黑素诱导拟南芥后,茉莉酸(JA)途径中的标记基因 PR3、PR4有明显的过量表达,同时水杨酸(SA)途径中的 PR1、PR2和PR5 的表达量也呈上升趋势,但上调幅度不明显,表明褪黑素诱导拟南芥产生的抗病过程主要是以JA信号途径为主,SA途径起辅助作用. 本研究认为褪黑素可有效抑制由芸薹根肿菌引起的根肿病,为褪黑素在植物防治中的作用提供了新认识. (图3 表1 参40)
Abstract:
Plasmodiophora brassicae is a soil-borne pathogen that damages cruciferae crops by causing root tissue to become hyperplastic and enlarged, resulting in crop death in severe cases. P. brassicae forms dormant spores that can survive for up to ten years. Its life history is complex, and it cannot be cultured in vitro, making it difficult to investigate the pathogenesis of its infection. In this study, the effects of melatonin on Plasmodiophora brassicae and its molecular mechanism of infection were investigated to provide theoretical support for the prevention and treatment of the disease, and to develop new methods of disease resistance. Different concentrations of melatonin were applied to Arabidopsis thaliana infected with P. brassicae, and the optimum antibacterial concentration was determined. The root tissue of Arabidopsis thaliana under different treatments was observed on paraffin sections. The expression levels of the pathogenesis-related (PR) genes PR1, PR2, PR3, PR4, and PR5 were analyzed using real-time polymerase chain reaction (PCR). Melatonin at 10 ?mol/L showed the best antibacterial effect, with a control efficacy of 47.57%. After melatonin treatment, both the incidence of Arabidopsis thaliana infection and the number of sporangia were reduced. Real-time PCR analysis indicated that melatonin excited the expression of the jasmonic acid-responsive PR3 and PR4 genes markedly, while the expression levels of PR1, PR2, and PR5 in the salicylic acid pathway also increased; however, the increases were not obvious. High expression of JA-responsive PR3 and PR4 genes hinted that the JA-signaling pathway was essential for melatonin-induced resistance in A. thaliana; salicylic acid-signaling might also have a role. The results showed that melatonin could effectively inhibit the root swelling caused by P. brassicae, providing a new understanding of the role of melatonin in plant disease control.

参考文献/References:

1 Hwang SF, Ahmed HU, Zhou Q, Strelkov SE, Gossen BD, Peng G, Turnbull GD. Assessment of the impact of resistant and susceptible canola on Plasmodiophora brassicae inoculum potential [J]. Plant Pathol, 2012, 61: 945-952
2 Horiuchi S, Hori M. A simple greenhouse technique for obtaining high levels of clubroot incidence [J]. Bull Chugoku Natl Agric Expt Stn, 1980, 17: 33-55
3 Diederichsen E, Frauen M, Linders E, Hatakeyama K, Hirai M. Status and perspectives of clubroot resistance breeding in crucifer cropsl [J]. Plant Growth Regul, 2009, 28: 265-281
4 Feng J, Xiao Q, Hwang SF, Strelkov SE, Gossen BD. Infection of canola by secondary zoospores of Plasmodiophora brassicae produced on a nonhost [J]. Eur J Plant Pathol, 2012, 132: 309-315
5 Tanaka S, Mido H, Ito S. Colonization by two isolates of Plasmodiophora brassicae with differing pathogenicity on a clubroot resistant cultivar of Chinese cabbage (Brassica rapa L. subsp. pekinensis) [J]. Gen Plant Pathol, 2006, 72: 205-209
6 A lberti C. Melatonin: the first hormone isolated from thepineal body [J]. Farmacol Sci, 1958, 13: 604-605
7 Calvo JR, Gonzalez-yanes C, Maldonado MD. The roleof melatonin in the cells of the innate immunity: a review [J]. Pineal Res, 2013, 55: 103-120
8 Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry [J]. Pineal Res, 1995, 18: 28-31
9 Byeon Y, Park S, Lee HY, Kim Y, Back K. Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase [J]. Pineal Res, 2014, 56: 275-282
10 Wang L, Zhao Y, Reiter RJ, He CJ, Lei QL, Zuo BX, Zeng XD, Li QT, Kong J. Changes in melatonin levels in transgenic “Micro-Tom” tomato overexpressing ovine AANAT and ovine HIOMT genes [J]. Pineal Res, 2014, 56: 134-142
11 Wang P, Sun X, Xie Y, Li MJ, Chen W, Zhang S, Liang D, Ma F. Melatonin regulates proteomic changes during leaf senescence in Malus hupehensis [J]. Pineal Res, 2014, 57: 291-307
12 Arnao MB, Hernández RJ. Melatonin: plant growth regulator and/or biostimulator during stress? [J]. Trends Plant Sci, 2014, 19: 789-797
13 Shi H, Reiter RJ, Tan D, Chan Z. Indole-3-acetic acid inducible 17 positively modulates natural leaf senescence through melatonin mediated pathway in Arabidopsis [J]. Pineal Res, 2015, 58: 26-33
14 Shi H, Jiang C, Ye TT, Tan D, Reiter RJ, Zhang H, Liu R, Chan Z. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass (Cynodon dactylon (L). Pers. ) by exogenous melatonin [J]. Exp Bot, 2015, 66: 681-694
15 Li C, Wang P, Wei Z, Liang D, Liu C, Yin L, Jia D, Fu M, Ma F. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis [J]. Pineal Res, 2012, 53: 298-306
16 Lei XY, Zhu RY, Zhang GY, Dai YR. Attenuation of cold induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines [J]. Pineal Res, 2004, 36: 126-131
17 Shi H, Wang X, Tan DX, Reiter RJ, Chan Z. Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in bermudagrass (Cynodon dactylon (L). Pers.) [J]. Pineal Res, 2015, 59: 120-131
18 Posmyk MM, Kuran H, Marcinak K, Marciniak K, Janas K. Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations [J]. Pineal Res, 2008, 45: 24-31
19 杨佩文, 尚慧, 董丽英, 刘树芳, 李家瑞. 大白菜根肿病发病因素分析与防治技术[J]. 西南农业学报, 2009, 22 (3): 663-666 [Yang PW, Shang H, Dong LY, Liu SF, Li JR. Analysis and prevention and treatment of root swelling of Chinese cabbage [J]. SW China J Agric Sci, 2009, 22 (3): 663-666]
20 Lee HY, Bteon Y, Back K. Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco [J]. Pineal Res, 2014, 57: 262-268
21 Lee HY, Bteon Y, Tan DX, Reiter RJ, Back K. Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen [J]. Pineal Res, 2015, 58: 291-299
22 Shi H, Chen Y, Qin Y, Tan DX, Reiter RJ, Chan Z. Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis [J]. Pineal Res, 2015, 59: 102-108
23 Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo YD. Roles of melatonin in abiotic stress resistance in plants [J]. Exp Bot, 2014, 66: 647-656
24 Wang P, Sun X, Xie Y, Li MJ, Chen W, Zhang S, Liang D, Ma F. Melatonin regulates proteomic changes during leaf senescence in Malus hupehensis [J]. Pineal Res, 2014, 57: 291-307
25 Z hang N, Zhang HJ, Zhao B, Sun QQ, Cao YY, Li R, Wu XX, Weeda S, Li Li, Ren S, Reiter RJ, Guo YD. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation [J]. Pineal Res, 2014, 56: 39-50
26 Arnao MB, Hernández-R J. Melatonin: plant growth regulator and/or biostimulator during stress? [J]. Trends Plant Sci, 2014, 19: 789-797
27 Weed S, Zhang N, Zhao X, Ndip G, Guo Y, Buck GA, Fu C, Ren S. Arabidopsis transcriptomev analysis reveals key roles of melatonin in plant defense systems [J]. PLoS ONE, 2014, 9: e93462
28 Lee HY, Bteon Y, Back K. Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco [J]. Pineal Res, 2014, 57: 262-268
29 Lee HY, Bteon Y, Tan DX, Reiter RJ, Back K. Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen [J]. Pineal Res, 2015, 58: 291-299
30 Arnao MB, Hernández-Ruiz J. Chemical stress by different agents affects the melatonin content of barley roots [J]. Pineal Res, 2009, 46: 295-299
31 Arnao MB, Hernández-Ruiz J. Growth conditions determine different melatonin levels in Lupinus albus L. [J]. Pineal Res, 2013, 55: 149-155
32 Riga P, Medina S, Garcia-Flores LA, Gil-Izquierdo A. Melatonin content of pepper and tomato fruits: effects of cultivar and solar radiation [J]. Food Chem , 2014, 15: 347-352
33 Afreen F, Zobayed S, Kozai T. Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation [J]. Pineal Res, 2006, 41: 108-115
34 Chen Q, Qi WB, Reiter RJ, Wei W, Wang BM. Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea [J]. J Plant Physiol, 2009, 166: 324-328
35 Sarropoulou VN, Dimassi-Theriou K, Therios I, Koukourikou-Petridou M. Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHLC (Prunus avium × Prunus cerasus) [J]. Plant Physiol Biochem, 2012, 61: 162-168
36 Lemarié S, Robert-Seilaniantz A, Lariagon C, Lemoine J, Marnet N, Jubault M, Manzanares-Dauleux M, Gravot A. Both the jasmonic acid and the salicylic acid pathways contribute to resistance to the biotrophic clubroot agent Plasmodiophora brassicae in Arabidopsis [J]. Plant Cell Physiol, 2015, 56: 2158-2168
37 Siemens J, Keller I, Sarx J, Kunz S, Schuller A, Nagel W, Schmülling T, Parniske M, Ludwig-Müller J. Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development [J]. Mol Plant Microb.Interact, 2006, 19: 480-494
38 Lovelock D, Donald C, Conlan XM. Cahill D. Salicylic acid suppression of clubroot in broccoli (Brassicae oleracea var. italica) caused by the obligate biotroph Plasmodiophora brassicae [J]. Aus Plant Pathol, 2013, 42: 141-153
39 Chen T, Bi K, He ZC, Gao ZX, Zhao Y, Fu YP, Cheng JS, Xie JT, Jiang DH. Arabidopsis mutant bik1 exhibits strong resistance to Plasmodiophora brassicae [J]. Frontiers Physiol, 2016, 7: 402
40 韩之琪. 氟唑活化酯诱导大白菜抗根肿病机制的研究[D]. 北京: 中国农业科学院, 2015 [Han ZQ. Study on the mechanism of anti-rhizoma of Chinese cabbage induced by fluorazole activated esters [D]. Beijing: Chinese Academy of Agriculture Sciences, 2015]

相似文献/References:

[1]赵昕,盛芬玲,赵敏桂,等.NaCl胁迫下盐芥和拟南芥化合物含量与蛋白质结构变化比较——傅立叶红外光谱法[J].应用与环境生物学报,2008,14(03):371.
 ZHAO Xin,et al..Effects of Salt Stress on Chemical Composition and Protein Conformation Changes in Thellungiella and Arabidopsis Seedlings[J].Chinese Journal of Applied & Environmental Biology,2008,14(01):371.
[2]王爱萍,景蕊莲,杨武德,等.小麦TaMyb2基因转化拟南芥表达载体的构建与遗传转化[J].应用与环境生物学报,2008,14(06):750.[doi:10.3724/SP.J.1145.2008.00750]
 WANG Aiping,JING Ruilian**,et al.Construction and Genetic Transformation of Arabidopsis thaliana Expression Vector of Wheat TaMyb2[J].Chinese Journal of Applied & Environmental Biology,2008,14(01):750.[doi:10.3724/SP.J.1145.2008.00750]
[3]李利红,仪慧兰,武冬梅.二氧化硫胁迫诱发拟南芥植株含硫抗氧化物水平提高[J].应用与环境生物学报,2010,16(05):613.[doi:10.3724/SP.J.1145.2010.00613]
 LI Lihong,YI Huilan,WU Dongmei.Enhancement of Sulfur-containing Antioxidants in Arabidopsis Response to Sulfur Dioxide Fumigation[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):613.[doi:10.3724/SP.J.1145.2010.00613]
[4]程涛,杨建明,刘辉,等.拟南芥硫酯酶基因(atfata)在大肠杆菌中的表达及其对游离脂肪酸合成的影响[J].应用与环境生物学报,2011,17(04):568.[doi:10.3724/SP.J.1145.2011.00568]
 CHENG Tao,YANG Jianming,LIU Hui,et al.Expression of Arabidopsis thaliana Thioesterase Gene (atfata) in Escherichia coli and Its Influence on Biosynthesis of Free Fatty Acid[J].Chinese Journal of Applied & Environmental Biology,2011,17(01):568.[doi:10.3724/SP.J.1145.2011.00568]
[5]马磊,张翔,田永强,等.拟南芥基因组中注释为异胡豆苷合成酶的基因克隆及异源表达[J].应用与环境生物学报,2013,19(02):224.[doi:10.3724/SP.J.1145.2013.00224]
 MA Lei,ZHANG Xiang,TIAN Yongqiang,et al.Molecular Cloning and Heterologous Expression of Putative Strictosidine Synthases from Arabidopsis thaliana[J].Chinese Journal of Applied & Environmental Biology,2013,19(01):224.[doi:10.3724/SP.J.1145.2013.00224]
[6]侯佩,冯媛媛,余桂容,等.拟南芥XERICO基因诱导表达提高转基因植物的耐旱性[J].应用与环境生物学报,2013,19(06):969.[doi:10.3724/SP.J.1145.2013.00969]
 HOU Pei,FENG Yuanyuan,YU Guirong,et al.Improved Drought Tolerance of Transgenic Arabidopsis thaliana by Inducible Expression of XERICO Gene[J].Chinese Journal of Applied & Environmental Biology,2013,19(01):969.[doi:10.3724/SP.J.1145.2013.00969]
[7]裴晓兔,王中康,罗远莉,等.茎瘤芥PR4基因的克隆与表达分析[J].应用与环境生物学报,2013,19(06):974.[doi:10.3724/SP.J.1145.2013.00974]
 PEI Xiaotu,WANG Zhongkang,LUO Yuanli,et al.Cloning and Expression Analysis of PR4 in Brassica juncea var. tumida[J].Chinese Journal of Applied & Environmental Biology,2013,19(01):974.[doi:10.3724/SP.J.1145.2013.00974]
[8]陈杰,许长征,曹颖倩,等.不同重金属对拟南芥根系特征的影响比较[J].应用与环境生物学报,2017,23(06):1122.[doi:10.3724/SP.J.1145.2017.03003]
 CHEN Jie,XU Changzheng,CAO Yingqian,et al.Heavy-metal-induced morphological changes of root characteristics in Arabidopsis thaliana[J].Chinese Journal of Applied & Environmental Biology,2017,23(01):1122.[doi:10.3724/SP.J.1145.2017.03003]
[9]邹婷,刘唤唤,刘永胜,等.拟南芥新基因SI(stress insensitive)参与非生物胁迫应答[J].应用与环境生物学报,2018,24(02):328.[doi:10.19675/j.cnki.1006-687x.2017.05043]
 ZOU Ting,LIU Huanhuan,LIU Yongsheng,et al.A novel gene SI (stress insensitive) is involved in the response to abiotic stress in Arabidopsis[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):328.[doi:10.19675/j.cnki.1006-687x.2017.05043]

更新日期/Last Update: 2018-02-09