|本期目录/Table of Contents|

[1]张雅飞,冯进辉,李键煚,等.酶催化奎宁酮不对称还原合成(S)-3-奎宁醇*[J].应用与环境生物学报,2016,22(05):854-859.[doi:10.3724/SP.J.1145.2015.11042]
 ZHANG Yafei,FENG Jinhui,et al.Asymmetric enzymatic reduction of quinuclidinone to (S)-3-quinuclidinol*[J].Chinese Journal of Applied & Environmental Biology,2016,22(05):854-859.[doi:10.3724/SP.J.1145.2015.11042]
点击复制

酶催化奎宁酮不对称还原合成(S)-3-奎宁醇*()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
22卷
期数:
2016年05期
页码:
854-859
栏目:
研究论文
出版日期:
2016-10-25

文章信息/Info

Title:
Asymmetric enzymatic reduction of quinuclidinone to (S)-3-quinuclidinol*
作者:
张雅飞冯进辉李键煚王玉王敏吴洽庆朱敦明
1天津科技大学生物工程学院,教育部工业发酵微生物重点实验室 天津 300457 2中国科学院天津工业生物技术研究所,工业酶国家工程实验室,天津市生物催化技术工程中心 天津 300308
Author(s):
ZHANG Yafei1 2 FENG Jinhui2 LI Jianjiong2 WANG Yu2 WANG Min1 WU Qiaqing2** & ZHU Dunming2**
1Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China 2Tianjin Biocatalysis Technology Engineering Center, National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
关键词:
(S)-3-奎宁醇红串红球菌生物催化不对称还原3-奎宁酮还原酶
Keywords:
(S)-3-quinuclidinol biocatalysis asymmetric reduction quinuclidinone reductase
分类号:
TQ464 : Q939.9
DOI:
10.3724/SP.J.1145.2015.11042
摘要:
光学纯的3-奎宁醇是一种重要的手性医药中间体,目前已报道的通过酶催化3-奎宁酮的不对称还原几乎都是得到(R)-3-奎宁醇. 在前期的工作中我们筛选获得一株能催化还原得到(S)-3-奎宁醇的红串红球菌(Rhodococcus erythropolis WY1406),其ee值达到99%. 本研究从该红串红球菌中克隆得到6个3-奎宁酮还原酶基因,并将其转入到大肠杆菌BL21(DE3)中诱导表达,利用粗酶液检测它们催化3-奎宁酮还原的活性及立体选择性. 结果发现其中两种酶ReQR-13和ReQR-25催化3-奎宁酮还原生成(S)-3-奎宁醇,ee值大于99%. 此外还发现了能催化生成(S)-3-奎宁醇的ee值分别为83%、46%和57%的奎宁酮还原酶ReQR-18、ReQR-27和ReQR-28. 其中表达ReQR-25的整细胞催化5 g/L的底物3-奎宁酮还原,转化率达93%. 本研究为合成光学纯的(S)-3-奎宁醇提供了一种新的方法. (图11 表3 参25)
Abstract:
Optically pure quinuclidinol is an important chiral pharmaceutical intermediate. The straightforward method of metal-catalyzed reduction to synthesize quinuclidinol does not meet the need of high optical purity for the product. Enzymatic reduction of quinuclidinone can give (R)-3-quinuclidinol with high optical purity. In our previous study, we identified a strain of Rhodococcus erythropolis WY1406, which catalyzed the reduction of quinuclidinone to produce (S)-3-quinuclidinol with 99% ee. In this study, 6 quinuclidinone reductase genes were cloned from this strain and expressed in E. coli, which could produce (S)-3-quinuclidinol with quinuclidinone hydrochloride as a substrate. Among the reductases, ReQR-13 and ReQR-25 catalyzed the reduction of quinuclidinone to afford (S)-3-quinuclidinol with > 99% ee. The whole E. coli cells expressing ReQR-25 gene catalyzed the reduction of 5 g/L quinuclidinone with 93% conversion in 14 h. This offers a new method for the synthesis of optically pure (S)-quinuclidinol.

参考文献/References:

1 吕彤, 刘杨, 赵青, 任杰, 王敏, 吴洽庆, 朱敦明. 烯酮还原酶基因的克隆与优化表达[J]. 应用与环境生物学报, 2011, 17 (1): 87-90 [Lü T, Liu Y, Zhao Q, Ren J, Wang M, Wu QQ, Zhu DM. Cloning and optimizing expression of enote reductase gene from Clostridium acetobutylicum in Escherichia coli [J]. Chin J Appl Environ Biol, 2011, 17 (1): 87-90] 2 Uzura A, Nomoto F, Sakoda A, Nishimoto, Yukifumi, Kataoka M, Shimizu S. Stereoselective synthesis of (R)-3-quinuclidinol through asymmol/Letric reduction of 3-quinuclidinone with 3-quinuclidinone reductase of Rhodotorula rubra [J]. Appl Microbiol Biotechnol, 2009, 83 (4): 617-626 3 Takeshita D, Takeshita D, Kataoka M, Miyakawa T, Miyazono KI, Kumashiro S, Nagai T, Urano N, Uzura A, Nagata K, Shimizu S, Tanokura M. Structural basis of stereospecific reduction by quinuclidinone reductase [J]. AMB Express, 2014, 4 (1): 6-6 4 Hou F. Expression, purification, crystallization and X-ray analysis of 3-quinuclidinone reductase from Agrobacterium tumefaciens [J]. Acta Crystallogr Sect F-Struct Biol Crystall Commum, 2012, 68: 1237-1239 5 Hou F, Miyakawa T, Kataoka M, Takeshita D, Kumashiro S, Uzura A, Urano N, Nagata K, Shimizu S, Tanokura M. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR [J]. Biochem Biophys Res Commun, 2014, 446 (4): 911-915 6 Kentaro I, Junji K, Nobuya I. Production of (R)-3-quinuclidinol by E. coli biocatalysts possessing NADH-dependent 3-quinuclidinone reductase (QNR or bacC) from Microbacterium luteolum and Leifsonia alcohol dehydrogenase (LSADH) [J]. Interna J Molec Sci, 2012, 13 (10): 13542-13553 7 Isotani K, Kurokawa J, Suzuki F, Nomoto S, Negishi T, Matsuda M, Itoh N. Gene cloning and characterization of two NADH-dependent 3-quinuclidinone reductases from Microbacterium luteolum JCM 9174 [J]. Appl Environ Microbiol, 2013, 79 (4): 1378-1384 8 Zhang WX, Xu GC, Huang L, Pan J, Yu HL, Xu JH. Highly efficient synthesis of (R)-3-quinuclidinol in a space-time yield of 916 g L-1 using a new bacterial reductase ArQR [J]. Organ Lett, 2013, 15 (19): 4917-4919 9 Walland A, Burkard S, Hamer R,?Tr?ger W. In vivo consequences of M 1 -receptor activation by talsaclidine [J]. Life Sci, 1997, 60 (13): 977-984 10 Walland A,?Pieper MP. Central activation of the sympathetic nervous system including the adrenals in anaesthetized guinea pigs by the muscarinic agonist talsaclidine [J]. Naunyn-Schmiedeberg’s Arch Pharmacol, 1998, 357 (4): 426-430 11 Schlessinger A, Geier E, Fan H, Irwin JJ, Shoichet BK, Giacomini KM, Sali A. Structure-based discovery of prescription drugs that interact with the norepinephrine transporter [J]. Proc Nat Acade Sci US A, 2011, 108 (38): 15810-15815 12 Chavakula R, Mutyala NR, Chennupati SR. Industrially viable preparation of (R)-3-quinuclidinol, a key building block of muscarine M1, M3 agonists and M3 antagonists [J]. ChemInform, 2014, 45 (14): 507-509 13 Martyn D, Ticehursta PA, Basfordb CI, Dallmanb TM. Lukasa PV, Marshallb GN,?David S. Characterisation of the influence of micronisation on the crystallinity and physical stability of revatropate hydrobromide [J]. Internl J Pharm, 1999, 193 (2): 247-259 14 李书彬, 申永存, 曾鹏. 3-3-奎宁醇的拆分研究[J]. 安徽化工, 2009 (1): 31-33 [Li SB, Shen YC, Zeng P. Separation analysis of 3-quinuclidinol [J]. Anhui Chem, 2009 (1): 31-33] 15 Wang Y, Li JJ, Wu QQ, Zhu DM. Microbial stereospecific reduction of 3-quinuclidinone with newly isolated Nocardia sp and Rhodococcus erythropolis [J]. J Mol Catal B-Enzym, 2013, 88: 14-19 16 Faber K, Franssen MCR. Prospects for the increased application of biocatalysts in organic transformations [J]. Trends Biotechnol, 1993, 11 (11): 461-470 17 Di LE, Elling RA, Wilson DK. Identification of a novel NADH-specific aldo-keto reductase using sequence and structural homologies [J]. Biochem J, 2006. 400: 105-114 18 Ahmed S, Fujii S, Kishikawa N, Ohba Y, Nakashima K, Kuroda N. Selective determination of quinones by high-performance liquid chromatography with on-line post column ultraviolet irradiation and peroxyoxalate chemiluminescence detection [J]. J Chromatogr A, 2006, 1133 (1-2): 76-82 19 Li HM, Zhu DM, Hua L, Biehl ER. Enantioselective enzymatic reductions of sterically bulky aryl alkyl ketones catalyzed by a NADPH-dependent carbonyl reductase [J]. J Organ Chem, 2006, 71 (25): 9484-9486 20 Zhu DM, Yang Y, Buynak JD, Hua L. Stereoselective ketone reduction by a carbonyl reductase from Sporobolomyces salmonicolor. Substrate specificity, enantioselectivity and enzyme-substrate docking studies [J]. Organ Biomolec Chem, 2006, 4 (14): 2690-2695 21 Cundari TR., Dinescu A, Zhu DM, Hua L. A molecular modeling study on the enantioselectivity of aryl alkyl ketone reductions by a NADPH-dependent carbonyl reductase [J]. J Molec Model, 2007, 13(6-7): 685-690 22 Oppermann U. Carbonyl reductases: the complex relationships of mammol/Lalian carbonyland quinone-reducing enzymes and their role in physiology [J]. Annu Rev Pharmacol Toxicol, 2007, 47: 293-322 23 Jin Y, Penning TM. Aldo-keto reductases and bioactivation/detoxication [J]. Annu Rev Pharmacol Toxicol, 2007, 47: 263-292 24 Yang Y, Zhu DM, Piegat TJ, Hua L. Enzymatic ketone reduction: mapping the substrate profile of a short-chain alcohol dehydrogenase (YMR226c) from Saccharomyces cerevisiae [J]. Tetrahedron-Asymmol/Letry, 2007, 18 (15): 1799-1803 25 Staab CA, Hartmanova T, El-Hawari Y, Ebert B, Kisiela M, Wsol V, Martin HJ, Maser E. Studies on reduction of S-nitrosoglutathione by human carbonyl reductases 1 and 3 [J]. Chem-Biol Interactions, 2011, 191 (1-3): 95-103

更新日期/Last Update: 2016-10-25