|本期目录/Table of Contents|

[1]梁程,陶勇,朱晓宇,等.乳酸合成丁酸的工艺构建及其条件优化*[J].应用与环境生物学报,2016,22(05):865-871.[doi:10.3724/SP.J.1145.2015.11061]
 LIANG Cheng,TAO Yong,et al.Process construction and fermentation optimization for butyrate production from lactate*[J].Chinese Journal of Applied & Environmental Biology,2016,22(05):865-871.[doi:10.3724/SP.J.1145.2015.11061]
点击复制

乳酸合成丁酸的工艺构建及其条件优化* ()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
22卷
期数:
2016年05期
页码:
865-871
栏目:
研究论文
出版日期:
2016-10-25

文章信息/Info

Title:
Process construction and fermentation optimization for butyrate production from lactate*
作者:
梁程陶勇朱晓宇张艳艳向元英何晓红
1中国科学院成都生物研究所 成都 610041 2中国科学院大学 北京 100049
Author(s):
LIANG Cheng1 2 TAO Yong1 ZHU Xiaoyu1** ZHANG Yanyan1 2 XIANG Yuanying1 2 & HE Xiaohong1
1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
丁酸乳酸响应面优化混合微生物发酵条件
Keywords:
butyric acid lactic acid response surface methodology mixed culture fermentation parameters
分类号:
TQ921.4 : Q939.9
DOI:
10.3724/SP.J.1145.2015.11061
摘要:
为构建一套乳酸合成丁酸的工艺,在开放体系中,驯化培养丁酸合成混合菌,并对发酵工艺条件进行系统研究和优化. 首先通过单因素试验设计确定各因素的最佳水平范围. 结果表明,pH值控制在5.5-7.5之间,乳酸浓度控制在20-40 g/L之间,外加乙酸浓度控制在1.5-3.5 g/L之间可以得到丁酸的最大产率. 在此基础上,进一步对pH值、乳酸浓度和外加乙酸浓度进行三因素三水平的Box-Behnken试验设计及响应面法分析,以丁酸产率作为响应值,探究影响丁酸产率的各因素之间相互作用. 通过方差分析显著性及求解回归方程得到最优发酵工艺条件:在pH值为6.72,乳酸浓度为27.83 g/L,外加乙酸浓度为2.79 g/L时,丁酸最高产率理论可达2.47 g L-1 d-1. 验证试验得到的结果是丁酸产率为2.43 g L-1 d-1,与预测值接近,较优化前产率提高了47.27%. 此外,利用高通量测序技术(Miseq)对微生物群落结构进行分析,发现混合微生物中占优势的菌群是Clostridium sensustricto、Lactobacillus与Clostridium IV,其丰度分别为69.35%、15.41%与10.05%. 利用本发酵新工艺能够得到相对稳定的丁酸产率,因此在工业中具有广阔的应用前景. (图8 表3 参34)
Abstract:
This paper reports a new process that can produce butyrate from lactate using mixed culture. In order to reduce the cost of butyrate fermentation as well as improve the yield of butyrate, we also investigated optimization of the fermentation conditions. First, functional mixed culture was acclimated by fed-batch fermentation in a designated reactor. Second, the optimal range of various factors were determined by conducting single factor experiments. Third, optimal conditions were obtained by using response surface methodology about Box-Behnken design. Finally, microbial community structure was analyzed by using high-throughput sequencing technologies. The single factor experiments showed the optimal range of pH as between 5.5 and 7.5, lactate concentration as between 20 g/L and 40 g/L, and additional acetate concentration as between 1.5 g/L and 3.5 g/L. Response surface analysis found that the highest production rate of butyrate (2.47 g L-1 D-1) was achieved at pH 6.72 with lactate concentration of 27.83 g/L and acetate concentration of 2.79 g/L. Finally, high-throughput sequencing analysis indicated that Clostridium sensustricto, Lactobacillus and Clostridium IV were the dominant microorganisms, with abundance of 69.35%, 15.41% and 10.05%, respectively. The new process of butyrate production from lactate with mixed culture may have potential for industrial production because the product rate is comparable to established fermentation systems.

参考文献/References:

1 Agler MT, Werner JJ, Iten LB, Dekker A, Cotta MA, Dien BS, Angenent LT. Shaping reactor microbiomes to produce the fuel precursor n-butyrate from pretreated cellulosic hydrolysates [J]. Environ Sci Technol, 2012, 46 (18): 10229-10238 2 Richter H, Qureshi N, Heger S, Dien B, Cotta MA, Angenent LT. Prolonged conversion of n-butyrate to n-butanol with Clostridium saccharoperbutylacetonicum in a two-stage continuous culture with in-situ product removal [J]. Biotechnol Bioeng, 2012, 109 (4): 913-921 3 Regestein L, Doerr EW, Staaden A, Rehmann L. Impact of butyric acid on butanol formation by Clostridium pasteurianum [J]. Bioresour Technol, 2015, 196: 153-159 4 Zhang CH, Yang H, Yang FX, Ma YJ. Current progress on butyric acid production by fermentation [J]. Curr Microbiol, 2009, 59 (6): 656-663 5 Vandak D, Zigova J, Sturdik E, Schlosser S. Evaluation of solvent and pH for extractive fermentation of butyric acid [J]. Process Biochem, 1997, 32 (3): 245-251 6 Zigova J, Sturdik E, Vandak D, Schlosser S. Butyric acid production by Clostridium butyricum with integrated extraction and pertraction [J]. Process Biochem, 1999, 34 (8): 835-843 7 Pouillart PR. Role of butyric acid and its derivatives in the treatment of colorectal cancer and hemoglobinopathies [J]. Life Sci, 1998, 63 (20): 1739-1760 8 Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function [J]. Aliment Pharmacol Ther, 2008, 27 (2): 104-119 9 Li X, Chen YG, Zhao S, Wang DB, Zheng X, Luo JY. Lactic acid accumulation from sludge and food waste to improve the yield of propionic acid-enriched VFA [J]. Biochem Eng J, 2014, 84: 28-35 10 Tanaka T, Hoshina M, Tanabe S, Sakai K, Ohtsubo S, Taniguchi M. Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation [J]. Bioresour Technol, 2006, 97 (2): 211-217 11 Gullon B, Yanez R, Alonso JL, Parajo JC. L-lactic acid. production from apple pomace by sequential hydrolysis and fermentation [J]. Bioresour Technol, 2008, 99 (2): 308-319 12 Li X, Chen YG, Zhao S, Chen H, Zheng X, Luo JY, Liu YN. Efficient production of optically pure L-lactic acid from food waste at ambient temperature by regulating key enzyme activity [J]. Water Res, 2015,70: 148-157 13 Wiegel J, Kuk SU, Kohring GW. Clostridium thermobutyricum sp-nov, a moderate thermophile isolated from a cellulolytic culture, that produces butyrate as the major product [J]. Int J Syst Bacteriol, 1989, 39 (2): 199-204 14 Thylin I, Schuisky P, Lindgren S, Gottschal JC. Influence of pH and lactic acid concentration on Clostridium tyrobutyrium during continuous growth in a pH-auxostat [J]. J Appl Bacteriol, 1995, 79 (6): 663-670 15 Canganella F, Kuk SU, Morgan H, Wiegel J. Clostridium thermobutyricum: growth studies and stimulation of butyrate formation by acetate supplementation [J]. Microbiol Res, 2002,157 (2): 149-156 16 Kleerebezem R, van Loosdrecht MCM. Mixed culture biotechnology for bioenergy production [J]. Curr Opin Biotechnol, 2007, 18 (3): 207-212 17 Syngiridis K, Bekatorou A, Kandylis P, Larroche C, Kanellaki M, Koutinas AA. Favouring butyrate production for a new generation biofuel by acidogenic glucose fermentation using cells immobilised on gamma-alumina [J]. Bioresour Technol, 2014, 161: 118-123 18 Zhu Y, Wu ZT, Yang ST. Butyric acid production from acid hydrolysate of corn fibre by Clostridium tyrobutyricum in a fibrous-bed bioreactor [J]. Process Biochem, 2002, 38 (5): 657-666 19 Wu ZT, Yang ST. Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum [J]. Biotechnol Bioeng, 2003, 82 (1): 93-102 20 Horiuchi JI, Shimizu T, Tada K, Kanno T, Kobayashi M. Selective production of organic acids in anaerobic acid reactor by pH control [J]. Bioresour Technol, 2002, 82 (3): 209-213 21 Zhu Y, Yang ST. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum [J]. J Biotechnol, 2004, 110 (2): 143-157 22 Zhu X, Tao Y, Liang C, Li X, Wei N, Zhang W, Zhou Y, Yang Y, Bo T. The synthesis of n-caproate from lactate: a new efficient process for medium-chain carboxylates production [J]. Sci Rep, 2015, 5: 14360 23 Temudo MF, Muyzer G, Kleerebezem R, van Loosdrecht MCM. Diversity of microbial communities in open mixed culture fermentations: impact of the pH and carbon source [J]. Appl Microbiol Biotechnol, 2008, 80 (6): 1121-1130 24 Van Ginkel S, Logan BE. Inhibition of biohydrogen production by undissociated acetic and butyric acids [J]. Environ Sci Technol, 2005, 39 (23): 9351-9356 25 Colin T, Bories A, Lavigne C, Moulin G. Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum [J]. Curr Microbiol, 2001, 43 (4): 238-243 26 Matsumoto M, Nishimura Y. Hydrogen production by fermentation using acetic acid and lactic acid [J]. J Biosci Bioeng, 2007, 103 (3): 236-241 27 Shi ZM, Huang L, Wu XT, Luo LP, Xiao KJ, Cai J, Xu ZN. Long-term production of butyric acid through immobilization of Clostridium tyrobutyricum in amoving fibrous-bed bioreactor (MFBB) [J]. J Chem Technol Biotechnol, 2014, 89 (12): 1883-1889 28 Liu XG, Zhu Y, Yang ST. Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants [J]. Enzyme Microb Technol, 2006, 38 (3-4): 521-528 29 Munoz-Tamayo R, Laroche B, Walter E, Dore J, Duncan SH, Flint HJ, Leclerc M. Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species [J]. Fems Microbiology Ecology, 2011, 76 (3): 615-624 30 Eeckhaut V, Maes S, Steppe M, Cleynen I, De Preter V, Machiels K, Ducatelle R, Vermeire S, Van Immerseel F. The butyrate producing Clostridium cluster IV genus Butyricicoccus has a decreased abundance in IBD stool samples and a comparative efficacy in TNBS models compared to currently available therapeutics [J]. Inflamm Bowel Dis, 2011, 17: S65-S66 31 Zwielehner J, Liszt K, Handschur M, Lassl C, Lapin A, Haslberger AG. Combined PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, Bifidobacteria and Clostridium cluster IV in institutionalized elderly [J]. Exp Gerontol, 2009, 44 (6-7): 440-446 32 Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos WM, Thas O, De Weirdt R, Kerckhof FM, Van de Wiele T. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model [J]. Isme J, 2013, 7 (5): 949-961 33 Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product [J]. Appl Environ Microbiol, 2004, 70 (10): 5810-5817 34 Claesson MJ, Li Y, Leahy S, Canchaya C, van Pijkeren JP, Cerdeno-Tarraga AM, Parkhill J, Flynn S, O’Sullivan GC, Collins JK, Higgins D, Shanahan F, Fitzgerald GF, van Sinderen D, O’Toole PW. Multireplicon genome architecture of Lactobacillus salivarius [J]. Proc Natl Acad Sci USA, 2006, 103 (17): 6718-6723

相似文献/References:

[1]张尧,张闻杰,蒋永,等.生物电化学系统固定二氧化碳同时产生乙酸和丁酸[J].应用与环境生物学报,2014,20(02):174.[doi:10.3724/SP.J.1145.2014.00174]
 ZHANG Yao,ZHANG Wenjie,JIANG Yong,et al.Simultaneous microbial electrosynthesis of acetate and butyrate from carbon dioxide in bioelectrochemical systems[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):174.[doi:10.3724/SP.J.1145.2014.00174]
[2]王广林,邓辉,聂丽,等.卵形孢球托霉Gongronella butleri NL-15对石灰岩的侵蚀机制[J].应用与环境生物学报,2018,24(02):374.[doi:10.19675/j.cnki.1006-687x.2017.05018]
 WANG Guanglin,DENG Hui,NIE Li,et al.Mechanism of limestone corrosion by Gongronella butleri NL-15[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):374.[doi:10.19675/j.cnki.1006-687x.2017.05018]

更新日期/Last Update: 2016-10-25