|本期目录/Table of Contents|

[1]邓玉营,黄振兴,阮文权,等.木质纤维素沼气体系中共培养菌群形成及 适应性变化研究进展*[J].应用与环境生物学报,2016,22(05):944-957.[doi:10.3724/SP.J.1145.2016.04044]
 DENG Yuying,,et al.Progress in the research of coculture consortia formation and adaptation changes in biomethanation system from lignocelluloses*[J].Chinese Journal of Applied & Environmental Biology,2016,22(05):944-957.[doi:10.3724/SP.J.1145.2016.04044]
点击复制

木质纤维素沼气体系中共培养菌群形成及 适应性变化研究进展*()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
22卷
期数:
2016年05期
页码:
944-957
栏目:
综 述
出版日期:
2016-10-25

文章信息/Info

Title:
Progress in the research of coculture consortia formation and adaptation changes in biomethanation system from lignocelluloses*
作者:
邓玉营黄振兴阮文权缪恒峰赵明星任红艳
1江南大学环境与土木工程学院 无锡 214122 2常州工程职业技术学院 常州 213164 3江苏省厌氧生物技术重点实验室 无锡 214122
Author(s):
DENG Yuying1 2 3 HUANG Zhenxing1 3 RUAN Wenquan1 3** MIAO Hengfeng1 3 ZHAO Mingxing1 3 & REN Hongyan1 3
1School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China 2Changzhou Institute of Engineering Technology, Changzhou 213164, China 3 Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China
关键词:
木质纤维素互利菌群互营氧化菌群适应性变化
Keywords:
lignocellulosic materials mutual consortia syntrophic oxidizing consortia adaptation changes
分类号:
Q939.9 : S216
DOI:
10.3724/SP.J.1145.2016.04044
摘要:
木质纤维素沼气化是生物能源领域最具潜力的技术之一,需要各功能菌群的协同作用和调控. 本文综述了水解菌群、丙酸和丁酸互营氧化菌群以及乙酸产甲烷中各类菌群的协同效能. 在水解阶段,厌氧真菌与嗜氢甲烷菌、纤维素降解菌和耗氢菌形成互利菌群后,代谢途径发生改变,实现了NAD+的再生,提高了水解效率;水解菌与非水解菌通过功能互补、抑制解除方式发挥作用. 丙酸和丁酸互营氧化菌群形成后,适应性变化主要体现在种间距离缩短,电子转移加快及相关基因表达水平提高等方面. 高温、高乙酸及高氨氮条件下,乙酸互营氧化产甲烷途径增强,使代谢途径更加灵活. 未来菌群研究可从群体感应信号和基因水平转移两方面展开:借助调控因子,结合基因和蛋白质组学等手段深入研究群体感应信号在功能菌群形成中的作用;在菌群的适应性机理方面,通过组学分析来揭示基因水平转移在菌群适应性变化及系统进化中的意义,以便为重塑菌群结构和功能改造提供理论支持. (图2 表8 参142)
Abstract:
Biomethanation from lignocellulosic materials is one of the most promising technology in the field of biomass energy, which involves syntrophic cooperation of function microorganisms. So this paper briefly reviews fibrolytic consortia, propionate and butyrate oxidizing consortia by syntrophic culture and various consortia during the acetotrophic methanogenesis process. During hydrolytic stage, mutual consortia formed between anaerobic fungi and hydrogenotrophic methanogens, or cellulolytic and H2-utilizing bacteria improve the efficiency of hydrolysis by altering metabolism pathway and then regenerating NAD+; the fibrolytic and non-fibrolytic bacteria interact with each other by ways of function complementary and disinhibition. Moreover, adaptation changes are mainly reflected on shortened interspecific distance, accelerated interspecific electron transfer and improved expression of related gene. Under the conditions of high temperature, high concentrations of acetate and ammonia nitrogen, methanogenesis by syntrophic acetate oxidation is enhanced, making the metabolism more flexible. Future studies are carried out in the following aspects. The role of quorum sensing signal on shaping function consortia should be further studied by means of regulatory factor combined with genomics and proteomics analysis. In the aspects of adaptation mechanism, the function of horizontal gene transfer on adaptation changes and systemic evolution should be investigated, which contributes to theoretical foundation in reshaping community structure and transforming microbial function.

参考文献/References:

1 Dashtban M, Schraft H, Qin W. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives [J]. Int J Biol Sci, 2009, 5 (6): 578-595 2 Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology [J]. Microbiol Mol Biol Res, 2002, 66 (4): 739-739 3 Youssef NH, Couger M, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ, Atiyeh HK, Wilkins MR, Elshahed MS. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader [J]. Appl Environ Microbiol, 2013, 79 (15): 4620-4634 4 Juturu V, Wu JC. Microbial xylanases: engineering, production and industrial applications [J]. Biotechnol Adv, 2012, 30 (6): 1219-1227 5 刘鹏飞, 陆雅海. 水稻土中脂肪酸互营氧化的研究进展 [J]. 微生物学通报, 2013, 40 (1): 109-122 [Liu PF, Lu YH. A review of syntrophic fatty acids oxidation in anoxic paddy soil [J]. Microbiol China, 2013, 40 (1): 109-122] 6 方晓瑜, 李家宝, 芮俊鹏, 李香真. 产甲烷生化代谢途径研究进展 [J]. 应用与环境生物学报, 2015, 21 (1): 1-9 [Fang XY, Li JB, Rui JP, Li XZ. Research progress in biochemical pathways of methanogenesis [J]. Chin J Appl Environ Biol, 2015, 21 (1): 1-9] 7 Zuroff TR, Curtis WR. Developing symbiotic consortia for lignocellulosic biofuel production [J]. Appl Microbiol Biotechnol, 2012, 93 (4): 1423-1435 8 Orpin CG. Studies on the rumen flagellate Neocallimastix frontalis [J]. J Gen Microbiol, 1975, 91 (2): 249-262 9 Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS. Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores [J]. ISME J, 2010, 4 (10): 1225-1235 10 Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential [J]. FEMS Microbiol Ecol, 2014, 90 (1): 1-17 11 Nicholson MJ, Mcsweeney CS, Mackie RI, Brookman JL, Theodorou MK. Diversity of anaerobic gut fungal populations analysed using ribosomal ITS1 sequences in faeces of wild and domesticated herbivores [J]. Anaerobe, 2009, 16 (2): 66-73 12 Haitjema CH, Solomon KV, Henske JK, Theodorou MK, O’Malley MA. Anaerobic gut fungi: advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production [J]. Biotechnol Bioeng, 2014, 111 (8): 1471-1482 13 Paul K, Nonoh JO, Mikulski L, Brune A. “Methanoplasmatales”, Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens [J]. Appl Environ Microbiol, 2012, 78 (23): 8245-8253 14 Demirel B, Scherer P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review [J]. Rev Environ Sci Biotechnol, 2008, 7 (2): 173-190 15 Bauchop T, Mountfort DO. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens [J]. Appl Environ Microbiol, 1981, 42 (42): 1103-1110 16 Leis S, Dresch P, Peintner U, Fliegerová K, Sandbichler AM, Insam H, Podmirseg SM. Finding a robust strain for biomethanation: anaerobic fungi (Neocallimastigomycota) from the Alpine ibex (Capra ibex) and their associated methanogens [J]. Anaerobe, 2014, 29: 34-43 17 Joblin KN, Campbell GP, Richardson AJ, Stewart CS. Fermentation of barley straw by anaerobic rumen bacteria and fungi in axenic culture and in co-culture with methanogens [J]. Lett Appl Microbiol, 1989, 9 (9): 195-197 18 Teunissen MJ, Kets EP, Op den Camp HJ, Huis in’t Veld JH, Vogels GD. Effect of coculture of anaerobic fungi isolated from ruminants and non-ruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities [J]. Arch Microbiol, 1992, 157 (2): 176-182 19 Joblin KN, Naylor GE, Williams AG. Effect of Methanobrevibacter smithii on Xylanolytic Activity of Anaerobic Ruminal Fungi [J]. Appl Environ Microbiol, 1990, 56 (8): 2287-2295 20 Jin W, Cheng YF, Mao SY, Zhu WY. Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane [J]. Bioresour Technol, 2011, 102 (17): 7925-7931 21 Müller M. Review Article: The hydrogenosome [J]. Microbiology, 1993, 139 (12): 2879-2889 22 Hackstein JH, Akhmanova A, Boxma B, Harhangi HR, Voncken FG. Hydrogenosomes: eukaryotic adaptations to anaerobic environments [J]. Microbiology, 1999, 7 (11): 441-447 23 Mountfort D, Asher R. Production and regulation of cellulase by two strains of the rumen anaerobic fungus Neocallimastix frontalis [J]. Appl Environ Microbiol, 1985, 49 (5): 1314-1322 24 Rees EM, Lloyd D, Williams AG. The effects of co-cultivation with the acetogen Acetitomaculum ruminis on the fermentative metabolism of the rumen fungi Neocallimastix patriciarum and Neocallimastix sp. strain L2 [J]. FEMS Microbiol Lett, 1995, 133 (1-2): 175-180 25 Marvin-Sikkema FD, Rees E, Kraak MN, Gottschal JC, Prins RA. Influence of metronidazole, CO, CO2, and methanogens on the fermentative metabolism of the anaerobic fungus Neocallimastix sp. strain L2 [J]. Appl Environ Microbiol, 1993, 59 (8): 2678-2683 26 Mountfort DO, Asher RA, Bauchop T. Fermentation of cellulose to methane and carbon dioxide by a rumen anaerobic fungus in a triculture with Methanobrevibacter sp. strain RA1 and Methanosarcina barkeri [J]. Appl Environ Microbiol, 1982, 44 (1): 128-134 27 Joblin KN, Matsui H, Naylor GE, Ushida K. Degradation of fresh ryegrass by methanogenic co-cultures of ruminal fungi grown in the presence or absence of Fibrobacter succinogenes [J]. Curr Microbiol, 2002, 45 (1): 46-53 28 Marvin-Sikkema F, Richardson A, Stewart C, Gottschal J, Prins R. Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi [J]. Appl Environ Microbiol, 1990, 56 (12): 3793-3797 29 Nakashimada Y, Srinivasan K, Murakami M, Nishio N. Direct conversion of cellulose to methane by anaerobic fungus Neocallimastix frontalis and defined methanogens [J]. Biotechnol Lett, 2000, 22 (3): 223-227 30 Cheng YF, Edwards JE, Allison GG, Zhu WY, Theodorou MK. Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture [J]. Bioresour Technol, 2009, 100 (20): 4821-4828 31 Jin W, Cheng YF, Mao SY, Zhu WY. Discovery of a novel rumen methanogen in the anaerobic fungal culture and its distribution in the rumen as revealed by real-time PCR [J]. BMC Microbiol, 2014, 14 (1): 104 32 Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S, Kataoka N, Miya A, Beppu T, Ueda K. Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge [J]. Int J Syst Evol Microbiol, 2009, 59 (7): 1764-1770 33 Khan A, Meek E, Sowden L, Colvin J. Emendation of genus Acetivibrio and description of Acetivibrio cellulosolvens, new species, of nonmotile cellulolytic mesophile [J]. Int J Syst Bacteriol, 1994, 34: 410-422 34 Murray WD, Sowden L, Colvin JR. Bacteroides cellulosolvens sp. nov., a cellulolytic species from sewage sludge [J]. Int J Syst Evol Microb, 1984, 34 (2): 185-187 35 Jannasch HW, Huber R, Belkin S, Stetter KO. Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga [J]. Arch Microbiol, 1988, 150 (1): 103-104 36 Rainey F, Donnison A, Janssen P, Saul D, Rodrigo A, Bergquist P, Daniel RM, Stackebrandt E, Morgan H. Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium [J]. FEMS Microbiol Lett, 1994, 120 (3): 263-266 37 Aksenova HY, Rainey FA, Janssen PH, Zavarzin GA, Morgan HW. Spirochaeta thermophila sp. nov., an obligately anaerobic, polysaccharolytic, extremely thermophilic bacterium [J]. Int J Syst Evol Microbiol, 1992, 42 (1): 175-177 38 Bagnara C, Gaudin C, Belaich JP. Physiological properties of Cellulomonas fermentans, a mesophilic cellulolytic bacterium [J]. Appl Microbiol Biotechnol, 1987, 26 (2): 170-176 39 Shi J, Xu F, Wang Z, Stiverson JA, Yu Z, Li Y. Effects of microbial and non-microbial factors of liquid anaerobic digestion effluent as inoculum on solid-state anaerobic digestion of corn stover [J]. Bioresour Technol, 2014, 157: 188-196 40 Wang Z, Xu F, Li Y. Effects of total ammonia nitrogen concentration on solid-state anaerobic digestion of corn stover [J]. Bioresour Technol, 2013, 144: 281-287 41 Osborne JM, Dehority B. Synergism in degradation and utilization of intact forage cellulose, hemicellulose, and pectin by three pure cultures of ruminal bacteria [J]. Appl Environ Microbiol, 1989, 55 (9): 2247-2250 42 Miron J. The hydrolysis of lucerne cell-wall monosaccharide components by monocultures or pair combinations of defined ruminal bacteria [J]. J Appl Bacteriol, 1991, 70 (3): 245-252 43 Miron J, Ben-Ghedalia D. The degradation and utilization of wheat-straw cell-wall monosaccharide components by defined ruminal cellulolytic bacteria [J]. Appl Microbiol Biotechnol, 1992, 38 (3): 432-437 44 McSweeney C, Dulieu A, Bunch R. Butyrivibrio spp. and other xylanolytic microorganisms from the rumen have cinnamoyl esterase activity [J]. Anaerobe, 1998, 4 (1): 57-65 45 Miron J, Ben-Ghedalia D. Digestion of cell-wall monosaccharides of ryegrass and alfalfa hays by the ruminal bacteria Fibrobacter succinogenes and Butyrivibrio fibrisolvens [J]. Can J Microbiol, 1993, 39 (8): 780-786 46 Latham M, Brooker B, Pettipher G, Harris P. Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (Lolium perenne) [J]. Appl Environ Microbiol, 1978, 35 (6): 1166-1173 47 Kudo H, Cheng KJ, Costerton J. Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose [J]. Can J Microbiol, 1987, 33 (3): 244-248 48 Fondevila M, Dehority B. Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages [J]. J Anim Sci, 1996, 74 (3): 678-684 49 Miron J, Duncan SH, Stewart CS. Interactions between rumen bacterial strains during the degradation and utilization of the monosaccharides of barley straw cell-walls [J]. J Appl Bacteriol, 1994, 76 (3): 282-287 50 Russell J. Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria [J]. Appl Environ Microbiol, 1985, 49 (3): 572-576 51 Liu Y, Yu P, Song X, Qu Y. Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17 [J]. Int J Hydrogen Energ, 2008, 33 (12): 2927-2933 52 Scheifinger C, Wolin MJ. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium [J]. Appl Microbiol, 1973, 26 (5): 789-795 53 Sawanon S, Kobayashi Y. Synergistic fibrolysis in the rumen by cellulolytic Ruminococcus flavefaciens and non-cellulolytic Selenomonas ruminantium: evidence in defined cultures [J]. Anim Sci J, 2006, 77 (2): 208-214 54 Chen J, Weimer PJ. Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria [J]. Microbiology, 2001, 147 (1): 21-30 55 Sawanon S, Koike S, Kobayashi Y. Evidence for the possible involvement of Selenomonas ruminantium in rumen fiber digestion [J]. FEMS Microbiol Lett, 2011, 325 (2): 170-179 56 Fukuma N, Koike S, Kobayashi Y. Involvement of recently cultured group U2 bacterium in ruminal fiber digestion revealed by coculture with Fibrobacter succinogenes S85 [J]. FEMS Microbiol Lett, 2012, 336 (1): 17-25 57 Miller TL, Wolin MJ. Bioconversion of Cellulose to Acetate with Pure Cultures of Ruminococcus albus and a Hydrogen-Using Acetogen [J]. Appl Environ Microbiol, 1995, 61 (11): 3832-3835 58 Morvan B, Rieu-Lesme F, Fonty G, Gouet P. In vitro Interactions between Rumen H2-Producing Cellulolytic Microorganisms and H2-Utilizing Acetogenic and Sulfate-Reducing Bacteria [J]. Anaerobe, 1996, 2 (3): 175-180 59 Rychlik JL, May T. The effect of a methanogen, Methanobrevibacter smithii, on the growth rate, organic acid production, and specific ATP activity of three predominant ruminal cellulolytic bacteria [J]. Curr Microbiol, 2000, 40 (3): 176-180 60 Miller T, Currenti E, Wolin M. Anaerobic bioconversion of cellulose by Ruminococcus albus, Methanobrevibacter smithii, and Methanosarcina barkeri [J]. Appl Microbiol Biotechnol, 2000, 54 (4): 494-498 61 Williams A, Withers S, Joblin K. The effect of cocultivation with hydrogen-consuming bacteria on xylanolysis by Ruminococcus flavefaciens [J]. Curr Microbiol, 1994, 29 (3): 133-138 62 Latham M, Wolin M. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium [J]. Appl Environ Microbiol, 1977, 34 (3): 297-301 63 Le Ruyet P, Dubourguier H, Albagnac G. Homoacetogenic fermentation of cellulose by a coculture of Clostridium thermocellum and Acetogenium kivui [J]. Appl Environ Microbiol, 1984, 48 (4): 893-894 64 Biesterveld S, Zehnder AJ, Stams AJ. Regulation of product formation in Bacteroides xylanolyticus X5-1 by interspecies electron transfer [J]. Appl Environ Microbiol, 1994, 60 (4): 1347-1352 65 Cavedon K, Canale-Parola E. Physiological interactions between a mesophilic cellulolytic Clostridium and a non-cellulolytic bacterium [J]. FEMS Microbiol Ecol, 1992, 86 (3): 237-245 66 Bernalier A, Fonty G, Bonnemoy F, Gouet P. Inhibition of the cellulolytic activity of Neocallimastix frontalis by Ruminococcus flavefaciens [J]. Microbiology, 1993, 139 (4): 873-880 67 Roger V, Grenet E, Jamot J, Bernalier A, Fonty G, Gouet P. Degradation of maize stem by two rumen fungal species, Piromyces communis and Caecomyces communis, in pure cultures or in association with cellulolytic bacteria [J]. Reprod Nutr Dev, 1992, 32 (4): 321-329 68 Stewart CS, Duncan SH, Richardson AJ, Backwell C, Begbie R. The inhibition of fungal cellulolysis by cell-free preparations from ruminococci [J]. FEMS Microbiol Lett, 1992, 97 (1-2): 83-87 69 Ha JK, Lee SS, Kim SW, Han IK, Ushida K, Cheng KJ. Degradation of rice straw by rumen fungi and cellulolytic bacteria through mono-, co- or sequential-cultures [J]. Asian Austral J Anim, 2001, 14 (6): 797-802 70 Schink B. Energetics of syntrophic cooperation in methanogenic degradation [J]. Microbiol Mol Biol Res, 1997, 61 (2): 262-280 71 Thauer RK, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria [J]. Bacteriol Rev, 1977, 41 (1): 100 72 Müller N, Worm P, Schink B, Stams AJ, Plugge CM. Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms [J]. Environ Microbiol Rep, 2010, 2 (4): 489-499 73 Wallrabenstein C, Hauschild E, Schink B. Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate [J]. Arch Microbiol, 1995, 164 (5): 346-352 74 Boone DR, Bryant MP. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems [J]. Appl Environ Microbiol, 1980, 40 (3): 626-632 75 Bartscht K, Cypionka H, Overmann J. Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community [J]. FEMS Microbiol Ecol, 1999, 28 (28): 249-259 76 de Bok FA, Harmsen HJ, Plugge CM, de Vries MC, Akkermans AD, de Vos WM, Stams AJ. The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum [J]. Int J Syst Evol Microbiol, 2005, 55 (4): 1697-1703 77 Imachi H, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y. Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium [J]. Int J Syst Evol Microbiol, 2007, 57 (7): 1487-1492 78 Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A, Harada H. Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium [J]. Int J Syst Evol Microbiol, 2002, 52 (5): 1729-1735 79 Plugge CM, Balk M, Stams AJ. Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium [J]. Int J Syst Evol Microbiol, 2002, 52 (2): 391-399 80 de Bok FA, Stams AJ, Dijkema C, Boone DR. Pathway of Propionate Oxidation by a Syntrophic Culture of Smithella propionica and Methanospirillum hungatei [J]. Appl Environ Microbiol, 2001, 67 (4): 1800-1804 81 McInerney M, Bryant M, Hespell R, Costerton J. Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium [J]. Appl Environ Microbiol, 1981, 41 (4): 1029-1039 82 Stieb M, Schink B. Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a spore forming, obligately syntrophic bacterium [J]. Arch Microbiol, 1985, 140 (4): 387-390 83 Wu C, Liu X, Dong X. Syntrophomonas cellicola sp. nov., a spore-forming syntrophic bacterium isolated from a distilled-spirit-fermenting cellar, and assignment of Syntrophospora bryantii to Syntrophomonas bryantii comb. nov [J]. Int J Syst Evol Microbiol, 2006, 56 (10): 2331-2335 84 Sousa DZ, Smidt H, Alves MM, Stams AJ. Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum [J]. Int J Syst Evol Microbiol, 2007, 57 (3): 609-615 85 Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H. Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate [J]. Int J Syst Evol Microbiol, 2000, 50 (2): 771-779 86 Svetlitshnyi V, Rainey F, Wiegel J. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short-and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum [J]. Int J Syst Evol Microbiol, 1996, 46 (4): 1131-1137 87 Jackson BE, Bhupathiraju VK, Tanner RS, Woese CR, McInerney MJ. Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms [J]. Arch Microbiol, 1999, 171 (2): 107-114 88 Grotenhuis J, Smit M, Plugge C, Xu Y, Van Lammeren A, Stams A, Zehnder A. Bacteriological composition and structure of granular sludge adapted to different substrates [J]. Appl Environ Microbiol, 1991, 57 (7): 1942-1949 89 Stams AJ, Grolle KC, Frijters CT, Van Lier JB. Enrichment of thermophilic propionate-oxidizing bacteria in syntrophy with Methanobacterium thermoautotrophicum or Methanobacterium thermoformicicum [J]. Appl Environ Microbiol, 1992, 58 (1): 346-352 90 Dwyer DF, Weeg-Aerssens E, Shelton DR, Tiedje JM. Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria [J]. Appl Environ Microbiol, 1988, 54 (6): 1354-1359 91 Schmidt JE, Ahring BK. Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor [J]. Appl Environ Microbiol, 1993, 59 (8): 2546-2551 92 De Bok F, Plugge C, Stams A. Interspecies electron transfer in methanogenic propionate degrading consortia [J]. Water Res, 2004, 38 (6): 1368-1375 93 Stams AJ, De Bok FA, Plugge CM, Eekert V, Miriam H, Dolfing J, Schraa G. Exocellular electron transfer in anaerobic microbial communities [J]. Environ Microbiol, 2006, 8 (3): 371-382 94 Dong X, Cheng G, Stams A. Butyrate oxidation by Syntrophospora bryantii in co-culture with different methanogens and in pure culture with pentenoate as electron acceptor [J]. Appl Microbiol Biotechnol, 1994, 42 (4): 647-652 95 McInerney MJ, Bryant MP, Pfennig N. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens [J]. Arch Microbiol, 1979, 122 (2): 129-135 96 Lupa B, Hendrickson EL, Leigh JA, Whitman WB. Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis [J]. Appl Environ Microbiol, 2008, 74 (21): 6584-6590 97 Takefumi S, Souichiro K, Shun’Ichi I, Kazuya W. Flagellum mediates symbiosis [J]. Science, 2009, 323 (5921): 1574 98 Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii Si, Logan B, Nealson KH, Fredrickson JK. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms [J]. PNAS, 2006, 103 (30): 11358-11363 99 Summers ZM, Fogarty HE, Ching L, Franks AE, Malvankar NS, Lovley DR. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria [J]. Science, 2010, 330 (6009): 1413-1415 100 Li H, Chang J, Liu P, Fu L, Ding D, Lu Y. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments [J]. Environ Microbiol, 2015, 17 (5): 1533-1547 101 Walker CB, Redding-Johanson AM, Baidoo EE, Rajeev L, He Z, Hendrickson EL, Joachimiak MP, Stolyar S, Arkin AP, Leigh JA, Zhou J, Keasling JD, Mukhopadhyay A, Stahl DA. Functional responses of methanogenic archaea to syntrophic growth [J]. ISME J, 2012, 6 (11): 2045-2055 102 Enoki M, Shinzato N, Sato H, Nakamura K, Kamagata Y. Comparative proteomic analysis of Methanothermobacter themautotrophicus ΔH in pure culture and in co-culture with a butyrate-oxidizing bacterium [J]. PLoS ONE, 2011, 6 (8): e24309 103 Lueders T, Pommerenke B, Friedrich MW. Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil [J]. Appl Environ Microbiol, 2004, 70 (10): 5778-5786 104 Wu C, Dong X, Liu X. Syntrophomonas wolfei subsp. methylbutyratica subsp. nov., and assignment of Syntrophomonas wolfei subsp. saponavida to Syntrophomonas saponavida sp. nov. comb. nov [J]. Syst Appl Microbiol, 2007, 30 (5): 376-380 105 Tang YQ, Ji P, Hayashi J, Koike Y, Wu XL, Kida K. Characteristic microbial community of a dry thermophilic methanogenic digester: its long-term stability and change with feeding [J]. Appl Microbiol Biotechnol, 2011, 91 (5): 1447-1461 106 Liu P, Qiu Q, Lu Y. Syntrophomonadaceae-affiliated species as active butyrate-utilizing syntrophs in paddy field soil [J]. Appl Environ Microbiol, 2011, 77 (11): 3884-3887 107 Gan Y, Qiu Q, Liu P, Rui J, Lu Y. Syntrophic oxidation of propionate in rice field soil at 15 ℃ and 30 ℃ under methanogenic conditions [J]. Appl Environ Microbiol, 2012, 78 (14): 4923-4932 108 Li J, Rui J, Pei Z, Sun X, Zhang S, Yan Z, Wang Y, Liu X, Zheng T, Li X. Straw-and slurry-associated prokaryotic communities differ during co-fermentation of straw and swine manure [J]. Appl Microbiol Biotechnol, 2014, 98 (10): 4771-4780 109 Roy F, Samain E, Dubourguier HC, Albagnac G. Synthrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids [J]. Arch Microbiol, 1986, 145 (2): 142-147 110 Wallrabenstein C, Hauschild E, Schink B. Pure culture and cytological properties of ‘Syntriphobacter wolini’ [J]. FEMS Microbiol Lett, 1994, 123 (3): 249-254 111 Beaty P, McInerney M. Growth of Syntrophomonas wolfei in pure culture on crotonate [J]. Arch Microbiol, 1987, 147 (4): 389-393 112 Zinder SH, Koch M. Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture [J]. Arch Microbiol, 1984, 138 (3): 263-272 113 Lee MJ, Zinder SH. Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2 [J]. Appl Environ Microbiol, 1988, 54 (1): 124-129 114 Schnürer A, Schink B, Svensson BH. Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium [J]. Int J Syst Evol Microbiol, 1996, 46 (4): 1145-1152 115 Hattori S, Kamagata Y, Hanada S, Shoun H. Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium [J]. Int J Syst Evol Microbiol, 2000, 50 (4): 1601-1609 116 Balk M, Weijma J, Stams AJ. Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor [J]. Int J Syst Evol Microbiol, 2002, 52 (4): 1361-1368 117 Westerholm M, Roos S, Schnürer A. Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter [J]. FEMS Microbiol Lett, 2010, 309 (1): 100-104 118 Westerholm M, Roos S, Schnürer A. Tepidanaerobacter acetatoxydans sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium-enriched mesophilic methanogenic processes [J]. Syst Appl Microbiol, 2011, 34 (4): 260-266 119 Hattori S. Syntrophic acetate-oxidizing microbes in methanogenic environments [J]. Microbes Environ, 2008, 23 (2): 118-127 120 Jetten MS, Stams AJ, Zehnder AJ. Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. [J]. FEMS Microbiol Rev, 1992, 8 (3-4): 181-197 121 Schnürer A, Houwen FP, Svensson BH. Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration [J]. Arch Microbiol, 1994, 162 (1-2): 70-74 122 Lee MJ, Zinder SH. Hydrogen partial pressures in a thermophilic acetate-oxidizing methanogenic coculture [J]. Appl Environ Microbiol, 1988, 54 (6): 1457-1461 123 Sasaki D, Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y. Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste [J]. J Biosci Bioeng, 2011, 111 (1): 41-46 124 Li YF, Nelson MC, Chen PH, Graf J, Li Y, Yu Z. Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures [J]. Appl Microbiol Biotechnol, 2015, 99 (2): 969-980 125 Uemura S, Harada H. Microbial characteristics of methanogenic sludge consortia developed in thermophilic UASB reactors [J]. Appl Microbiol Biotechnol, 1993, 39 (4-5): 654-660 126 Schnürer A, Nordberg ?. Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature [J]. Water Sci Technol, 2008, 57 (5): 127 Gao S, Zhao M, Chen Y, Yu M, Ruan W. Tolerance response to in situ ammonia stress in a pilot-scale anaerobic digestion reactor for alleviating ammonia inhibition [J]. Bioresour Technol, 2015, 198: 372-379 128 Westerholm M, Dolfing J, Sherry A, Gray ND, Head IM, Schnürer A. Quantification of syntrophic acetate-oxidizing microbial communities in biogas processes [J]. Environ Microbiol Rep, 2011, 3 (4): 500-505 129 Angenent LT, Sung S, Raskin L. Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste [J]. Water Res, 2002, 36 (18): 4648-4654 130 Sun L, Müller B, Westerholm M, Schnürer A. Syntrophic acetate oxidation in industrial CSTR biogas digesters [J]. J Biotechnol, 2014, 171: 39-44 131 Schnürer A, Zellner G, Svensson BH. Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors [J]. FEMS Microbiol Ecol, 1999, 29 (3): 249-261 132 Hao LP, Lu? F, He PJ, Li L, Shao LM. Predominant contribution of syntrophic acetate oxidation to thermophilic methane formation at high acetate concentrations [J]. Environ Sci Technol, 2010, 45 (2): 508-513 133 Liu F, Conrad R. Thermoanaerobacteriaceae oxidize acetate in methanogenic rice field soil at 50 °C [J]. Environ Microbiol, 2010, 12 (8): 2341-2354 134 Petersen SP, Ahring BK. Acetate oxidation in a thermophilic anaerobic sewage-sludge digestor: the importance of non-aceticlastic methanogenesis from acetate [J]. FEMS Microbiol Ecol, 1991, 86 (2): 149-158 135 Lee MJ, Zinder SH. Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetate-oxidizing coculture [J]. Arch Microbiol, 1988, 150 (6): 513-518 136 Zeikus J, Winfrey M. Temperature limitation of methanogenesis in aquatic sediments [J]. Appl Environ Microbiol, 1976, 31 (1): 99-107 137 Williams P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world [J]. Microbiology, 2007, 153: 3923-3938 138 Sturme MHJ, Kleerebezem M, Nakayama J, Akkermans ADL, Vaughan EE, de Vos WM. Cell to cell communication by autoinducing peptides in gram-positive bacteria [J]. Antonie Van Leeuwenhoek, 2002, 81 (1-4): 233-243 139 Erickson DL, Nsereko VL, Morgavi DP, Selinger LB, Rode LM, Beauchemin KA. Evidence of quorum sensing in the rumen ecosystem: detection of N-acyl homoserine lactone autoinducers in ruminal contents [J]. Can J Microbiol, 2002, 48 (4): 374-378 140 Garcia-Vallve S, Romeu A, Palau J. Horizontal gene transfer of glycosyl hydrolases of the rumen fungi [J]. Mol Biol Evol, 2000, 17 (3): 352-361 141 Kato S, Watanabe K. Ecological and evolutionary interactions in syntrophic methanogenic consortia [J]. Microbes Environ, 2010, 25 (3): 145-151 142 Scholten JC, Culley DE, Brockman FJ, Wu G, Zhang W. Evolution of the syntrophic interaction between Desulfovibrio vulgaris and Methanosarcina barkeri: involvement of an ancient horizontal gene transfer [J]. Biochem Biophys Res Commun, 2007, 352 (1): 48-54

更新日期/Last Update: 2016-10-25